653 research outputs found

    Global priorities for conservation of reptilian phylogenetic diversity in the face of human impacts

    Get PDF
    Phylogenetic diversity measures are increasingly used in conservation planning to represent aspects of biodiversity beyond that captured by species richness. Here we develop two new metrics that combine phylogenetic diversity and the extent of human pressure across the spatial distribution of species — one metric valuing regions and another prioritising species. We evaluate these metrics for reptiles, which have been largely neglected in previous studies, and contrast these results with equivalent calculations for all terrestrial vertebrate groups. We find that regions under high human pressure coincide with the most irreplaceable areas of reptilian diversity, and more than expected by chance. The highest priority reptile species score far above the top mammal and bird species, and reptiles include a disproportionate number of species with insufficient extinction risk data. Data Deficient species are, in terms of our species-level metric, comparable to Critically Endangered species and therefore may require urgent conservation attention

    Gecko diversity : a history of global discovery

    Get PDF
    1935 gecko species (and 224 subspecies) were known in December 2019 in seven families and 124 genera. These nearly 2000 species were described by ~950 individuals of whom more than 100 described more than 10 gecko species each. Most gecko species were discovered during the past 40 years. The primary type specimens of all currently recognized geckos (including subspecies) are distributed over 161 collections worldwide, with 20 collections having about two thirds of all primary types. The primary type specimens of about 40 gecko taxa have been lost or unknown. The phylogeny of geckos is well studied, with DNA sequences being available for ~76% of all geckos (compared to ~63% in other reptiles) and morphological characters now being collected in databases. Geographically, geckos occur on five continents and many islands but are most species-rich in Australasia (which also houses the greatest diversity of family-level taxa), Southeast Asia, Africa, Madagascar, and the West Indies. Among countries, Australia has the highest number of geckos (241 species), with India, Madagascar, and Malaysia being the only other countries with more than 100 described species each. As expected, when correcting for land area, countries outside the tropics have fewer geckos

    The effect of algal turbidity on larval performance and the ontogeny of digestive enzymes in the grey mullet (Mugil cephalus)

    Get PDF
    A study comprised of two trials determined the effects of water turbidity produced by live microalgae and inert clay particles on the larval rearing of grey mullet (Mugil cephalus). Trial 1 evaluated the effect of microalgae produced water turbidity on grey mullet larval performance and digestive tract (DT) enzyme ontogeny. Two microalgae (Nannochloropsis oculata and Isochrysis galbana) water turbidity levels (0.76 and 1.20 NTU, respectively) and a non-microalgae control (0.26 NTU) were investigated on 2 to 23 dph grey mullet larvae. The higher turbidity (1.2 NTU) larvae (5 dph) consumed markedly (P < .05) more rotifers than other treatment fish, independently of the microalgae type. There was no clear effect of the turbidity treatments on DT enzyme ontogeny. However, in all treatments lipase and alkaline proteases appeared to be modulated by the diet. Alkaline phosphatase activity was ca. 8 times higher and α-amylase activity increased 5.3 times in 79 dph fish compared to 40 dph individuals. The ratio of alkaline phosphatase and leucine-alanine aminopeptidase indicated gut maturation occurred around 61 dph. Trial 2 compared the most effective N.occulata produced turbidity level (1.2 NTU) with the identical water turbidity produced by inert clay on larval performance. M. cephalus larvae exposed to high algal turbidity demonstrated superior performance (P < .05), in terms of rotifer ingestion, dry weight gain and survival, compared to cohorts reared under the clay treatment and the lower microalgae produced turbidity. These findings suggested that water algal turbidity is not the dominant factor determining improved grey mullet larval performance.info:eu-repo/semantics/acceptedVersio

    MR Elastography demonstrates reduced white matter shear stiffness in early-onset hydrocephalus

    Get PDF
    INTRODUCTION: Hydrocephalus that develops early in life is often accompanied by developmental delays, headaches and other neurological deficits, which may be associated with changes in brain shear stiffness. However, noninvasive approaches to measuring stiffness are limited. Magnetic Resonance Elastography (MRE) of the brain is a relatively new noninvasive imaging method that provides quantitative measures of brain tissue stiffness. Herein, we aimed to use MRE to assess brain stiffness in hydrocephalus patients compared to healthy controls, and to assess its associations with ventricular size, as well as demographic, shunt-related and clinical outcome measures. METHODS: MRE was collected at two imaging sites in 39 hydrocephalus patients and 33 healthy controls, along with demographic, shunt-related, and clinical outcome measures including headache and quality of life indices. Brain stiffness was quantified for whole brain, global white matter (WM), and lobar WM stiffness. Group differences in brain stiffness between patients and controls were compared using two-sample t-tests and multivariable linear regression to adjust for age, sex, and ventricular volume. Among patients, multivariable linear or logistic regression was used to assess which factors (age, sex, ventricular volume, age at first shunt, number of shunt revisions) were associated with brain stiffness and whether brain stiffness predicts clinical outcomes (quality of life, headache and depression). RESULTS: Brain stiffness was significantly reduced in patients compared to controls, both unadjusted (p ≤ 0.002) and adjusted (p ≤ 0.03) for covariates. Among hydrocephalic patients, lower stiffness was associated with older age in temporal and parietal WM and whole brain (WB) (beta (SE): -7.6 (2.5), p = 0.004; -9.5 (2.2), p = 0.0002; -3.7 (1.8), p = 0.046), being female in global and frontal WM and WB (beta (SE): -75.6 (25.5), p = 0.01; -66.0 (32.4), p = 0.05; -73.2 (25.3), p = 0.01), larger ventricular volume in global, and occipital WM (beta (SE): -11.5 (3.4), p = 0.002; -18.9 (5.4), p = 0.0014). Lower brain stiffness also predicted worse quality of life and a higher likelihood of depression, controlling for all other factors. CONCLUSIONS: Brain stiffness is reduced in hydrocephalus patients compared to healthy controls, and is associated with clinically-relevant functional outcome measures. MRE may emerge as a clinically-relevant biomarker to assess the neuropathological effects of hydrocephalus and shunting, and may be useful in evaluating the effects of therapeutic alternatives, or as a supplement, of shunting

    Evolution of diel activity patterns in skinks (Squamata: Scincidae), the world's second‐largest family of terrestrial vertebrates

    Get PDF
    Many animals have strict diel activity patterns, with unique adaptations for either diurnal or nocturnal activity. Diel activity is phylogenetically conserved, yet evolutionary shifts in diel activity occur and lead to important changes in an organism's morphology, physiology, and behavior. We use phylogenetic comparative methods to examine the evolutionary history of diel activity in skinks, one of the largest families of terrestrial vertebrates. We examine how diel patterns are associated with microhabitat, ambient temperatures, and morphology. We found support for a nondiurnal ancestral skink. Strict diurnality in crown group skinks only evolved during the Paleogene. Nocturnal habits are associated with fossorial activity, limb reduction and loss, and warm temperatures. Our results shed light on the evolution of diel activity patterns in a large radiation of terrestrial ectotherms and reveal how both intrinsic biotic and extrinsic abiotic factors can shape the evolution of animal activity patterns

    Ultraconserved elements-based phylogenomic systematics of the snake superfamily Elapoidea, with the description of a new Afro-Asian family

    Get PDF
    The highly diverse snake superfamily Elapoidea is considered to be a classic example of ancient, rapid radiation. Such radiations are challenging to fully resolve phylogenetically, with the highly diverse Elapoidea a case in point. Previous attempts at inferring a phylogeny of elapoids produced highly incongruent estimates of their evolutionary relationships, often with very low statistical support. We sought to resolve this situation by sequencing over 4,500 ultraconserved element loci from multiple representatives of every elapoid family/sub-family level taxon and inferring their phylogenetic relationships with multiple methods. Concatenation and multispecies coalescent based species trees yielded largely congruent and well-supported topologies. Hypotheses of a hard polytomy were not retained for any deep branches. Our phylogenies recovered Cyclocoridae and Elapidae as diverging early within Elapoidea. The Afro-Malagasy radiation of elapoid snakes, classified as multiple subfamilies of an inclusive Lamprophiidae by some earlier authors, was found to be monophyletic in all analyses. The genus Micrelaps was consistently recovered as sister to Lamprophiidae. We establish a new family, Micrelapidae fam. nov., for Micrelaps and assign Brachyophis to this family based on cranial osteological syn-apomorphy. We estimate that Elapoidea originated in the early Eocene and rapidly diversified into all the major lineages during this epoch. Ecological opportunities presented by the post-Cretaceous-Paleogene mass extinction event may have promoted the explosive radiation of elapoid snakes.Peer reviewe

    A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.

    Get PDF
    Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group. A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians. The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role

    Predicting the risk to develop preeclampsia in the first trimester combining promoter variant -98A/C of LGALS13 (placental protein 13), Black ethnicity, previous preeclampsia, obesity, and maternal age

    Get PDF
    BACKGROUND: We studied LGALS13 [Placental Protein 13 (PP13)] promoter DNA polymorphisms in preeclampsia (PE) prediction, given PP13’s effects on hypotension, angiogenesis and immunotolerance. METHODS: We retrieved 67 PE (49 term, 18 preterm) cases and 196 matched controls from first trimester plasma samples prospectively collected at King's College Hospital, London. Cell-free DNA was extracted and the four LGALS13 exons were sequenced after PCR amplification. Expression of LGALS13 promoter reporter constructs were determined in BeWo trophoblast-like cells with luciferase assays. RESULTS: A/C genotype in –98 position was the lowest in term PE compared to controls (p<0.032), similar to a South African cohort. Control but not all PE allele frequencies were in Hardy-Weinberg equilibrium (p=0.036). The Odds ratio for term PE calculated from prior risk, the A/A genotype and black ethnicity was 14 (p<0.001). In luciferase assays, the LGALS13 promoter “-98A" variant had 13% (p=0.04) and 26% (p<0.001) lower expression than the "-98C" variant in non-differentiated and differentiated BeWo cells, respectively. After 48-hour differentiation, there was 4.55- fold increase in expression of "-98C" variant versus 3.85-fold of "-98A" variant (p<0.001). CONCLUSION: Lower LGALS13 (PP13) expression by the "-98A/A" genotype appears to impose higher risk to develop PE and could aid in PE prediction

    Global patterns of body size evolution in squamate reptiles are not driven by climate

    Get PDF
    Aim: Variation in body size across animal species underlies most ecological and evolutionary processes shaping local- and large-scale patterns of biodiversity. For well over a century, climatic factors have been regarded as primary sources of natural selection on animal body size, and hypotheses such as Bergmann's rule (the increase of body size with decreasing temperature) have dominated discussions. However, evidence for consistent climatic effects, especially among ectotherms, remains equivocal. Here, we test a range of key hypotheses on climate-driven size evolution in squamate reptiles across several spatial and phylogenetic scales. Location: Global. Time period: Extant. Major taxa studied: Squamates (lizards and snakes). Methods: We quantified the role of temperature, precipitation, seasonality and net primary productivity as drivers of body mass across ca. 95% of extant squamate species (9,733 spp.). We ran spatial autoregressive models of phylogenetically corrected median mass per equal-area grid cell. We ran models globally, across separate continents and for major squamate clades independently. We also performed species-level analyses using phylogenetic generalized least square models and linear regressions of independent contrasts of sister species. Results: Our analyses failed to identify consistent spatial patterns in body size as a function of our climatic predictors. Nearly all continent- and family-level models differed from one another, and species-level models had low explanatory power. Main conclusions: The global distribution of body mass among living squamates varies independently from the variation in multiple components of climate. Our study, the largest in spatial and taxonomic scale conducted to date, reveals that there is little support for a universal, consistent mechanism of climate-driven size evolution within squamates
    corecore