Global patterns of body size evolution in squamate reptiles are not	1
driven by climate	2
Alex Slavenko ^{1*} , Anat Feldman ² , Allen Allison ³ , Aaron M. Bauer ⁴ , Monika Böhm ⁵ ,	3
Laurent Chirio ² , Guarino R. Colli ⁶ , Indraneil Das ⁷ , Tiffany M. Doan ⁸ , Matthew	4
LeBreton ⁹ , Marcio Martins ¹⁰ , Danny Meirte ¹¹ , Zoltán T. Nagy ¹² , Cristiano de C.	5
Nogueira ¹⁰ , Olivier S.G. Pauwels ¹³ , Daniel Pincheira-Donoso ¹⁴ , Uri Roll ¹³ , Philipp	6
Wagner ^{4,10} , Yuezhao Wang ¹⁷ , Shai Meiri ^{1,10}	/
*Corresponding author: slavenko@mail.tau.ac.il	8
	9
Affiliations:	10
¹ School of Zoology, Tel Aviv University, Tel-Aviv, 6997801, Israel	11
² These authors are unaffiliated.	12
³ Hawaii Biological Survey, 4 Bishop Museum, Honolulu, HI, 96817, USA	13
⁴ Department of Biology, Villanova University, Villanova, PA, 19085, USA	14
⁵ Institute of Zoology, Zoological Society of London, London, NW1 4RY, UK	15
⁶ Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal,	16
70910-900, Brazil	17
⁷ Institute of Biodiversity and Environmental Conservation, Universiti Malaysia	18
Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia	19
⁸ Division of Natural Sciences, New College of Florida, Sarasota, FL, 34243, USA	20
⁹ Mosaic (Environment, Health, Data, Technology), Yaoundé, Cameroon	21
¹⁰ Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São	22
Paulo, 05508-090, Brazil	23
¹¹ Royal Museum for Central Africa, Leuvensesteenweg 13, Tervuren, 3080, Belgium	24

¹² Joint Experimental Molecular Unit, Royal Belgian Institute of Natural Sciences,	25
Brussels, B-1000, Belgium	26
¹³ Department of Recent Vertebrates, Royal Belgian Institute of Natural Sciences,	27
Brussels, B-1000, Belgium	28
¹⁴ School of Science and Technology, Department of Biosciences, Nottingham Trent	29
University, Nottingham, NG11 8NS, UK	30
¹⁵ Mitrani Department of Desert Ecology, The Jacob Blaustein Institutes for Desert	31
Research, Ben-Gurion University, Midreshet Ben-Gurion, 8499000, Israel	32
¹⁶ Allwetterzoo, Münster, D48161, Germany	33
¹⁷ Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041,	34
China	35
¹⁸ Steinhardt Museum of Natural History, Tel Aviv University, Tel-Aviv, 6997801, Israel	36
	37
ACKNOWLEDGEMENTS:	38
We would like to thank Franz Krah for his useful suggestions and help with statistical	39
analyses and R code.	40
BIOSKETCH:	41
Alex Slavenko is a PhD student interested in biogeographical patterns of body size	42
and life-history traits and the distribution of species, as well as the general biology of	43
reptiles and amphibians. He is particularly interested in the patterns and evolution of	44
such traits in insular environments.	45
	46 47

ABSTRACT

Aim. Variation in body size across animal species underlies most ecological and	51
evolutionary processes shaping local- and large-scale patterns of biodiversity. For	52
well over a century, climatic factors have been regarded as primary sources of	53
natural selection on animal body size, ad hypotheses such as Bergmann's rule (the	54
increase of body size with decreasing temperature) have dominated discussions.	55
However, evidence for consistent climatic effects, especially among ectotherms,	56
remains equivocal. Here, we test a range of key hypotheses on climate-driven size	57
evolution in squamate reptiles across several spatial and phylogenetic scales.	58
Location. Global.	59
Time period. Extant.	60
Major taxa studied. Squamates (lizards and snakes).	61
Major taxa studied. Squamates (lizards and snakes). Methods. We quantified the role of temperature, precipitation, seasonality and	61 62
Major taxa studied. Squamates (lizards and snakes). Methods. We quantified the role of temperature, precipitation, seasonality and net primary productivity as drivers of body mass across ~95% of extant squamate	61 62 63
Major taxa studied. Squamates (lizards and snakes). Methods. We quantified the role of temperature, precipitation, seasonality and net primary productivity as drivers of body mass across ~95% of extant squamate species (9,733 spp.). We ran spatial autoregressive models of phylogenetically-	61 62 63 64
Major taxa studied. Squamates (lizards and snakes). Methods. We quantified the role of temperature, precipitation, seasonality and net primary productivity as drivers of body mass across ~95% of extant squamate species (9,733 spp.). We ran spatial autoregressive models of phylogenetically- corrected median mass per equal-area grid cells. We ran models globally, across	61 62 63 64 65
Major taxa studied. Squamates (lizards and snakes). Methods. We quantified the role of temperature, precipitation, seasonality and net primary productivity as drivers of body mass across ~95% of extant squamate species (9,733 spp.). We ran spatial autoregressive models of phylogenetically- corrected median mass per equal-area grid cells. We ran models globally, across separate continents, and for major squamate clades independently. We also	61 62 63 64 65 66
Major taxa studied. Squamates (lizards and snakes). Methods. We quantified the role of temperature, precipitation, seasonality and net primary productivity as drivers of body mass across ~95% of extant squamate species (9,733 spp.). We ran spatial autoregressive models of phylogenetically- corrected median mass per equal-area grid cells. We ran models globally, across separate continents, and for major squamate clades independently. We also performed species-level analyses using phylogenetic generalized least square	61 62 63 64 65 66 67
Major taxa studied. Squamates (lizards and snakes). Methods. We quantified the role of temperature, precipitation, seasonality and net primary productivity as drivers of body mass across ~95% of extant squamate species (9,733 spp.). We ran spatial autoregressive models of phylogenetically- corrected median mass per equal-area grid cells. We ran models globally, across separate continents, and for major squamate clades independently. We also performed species-level analyses using phylogenetic generalized least square models, and linear regressions of independent contrasts of sister species.	 61 62 63 64 65 66 67 68
Major taxa studied. Squamates (lizards and snakes). Methods. We quantified the role of temperature, precipitation, seasonality and net primary productivity as drivers of body mass across ~95% of extant squamate species (9,733 spp.). We ran spatial autoregressive models of phylogenetically- corrected median mass per equal-area grid cells. We ran models globally, across separate continents, and for major squamate clades independently. We also performed species-level analyses using phylogenetic generalized least square models, and linear regressions of independent contrasts of sister species. Results. Our analyses failed to identify consistent spatial patterns in body size as a	 61 62 63 64 65 66 67 68 69

differed from one another, and species-level models had low explanatory power. 71

Main conclusions. The global distribution of body mass among living squamates	72
varies independently from variation in multiple components of climate. Our study,	73
the largest in spatial and taxonomic scale conducted to date, reveals that there is	74
little support for a universal, consistent mechanism of climate-driven size evolution	75
within squamates.	76
	77

KEYWORDS: Bergmann's rule, body mass, body size, ectotherms, phylogenetic	78
comparative analyses, reptiles, size clines, spatial analyses	79

INTRODUCTION

Climate is traditionally considered a primary source of natural selection	81
underlying the evolution of spatial, ecological and phylogenetic variation in animal	82
body sizes. Given that most ecological and evolutionary processes operating among	83
and within species are strongly influenced by body size (Peters, 1983), the	84
identification of predictable relationships between size and geography has offered a	85
key to elucidate the emergence of local- and large-scale patterns of biodiversity	86
(<i>e.g.</i> ,Siemann, Tilman & Haarstad, 1996; Gillooly, Brown, West, Savage & Charnov,	87
2001; Woodward et al., 2005; Slavenko, Tallowin, Itescu, Raia & Meiri, 2016).	88
Remarkably, this principle predates the theory of evolution by natural selection	89
itself. Bergmann's (1847) seminal work suggested that body size among closely	90
related mammal and bird species tends to increase towards colder geographic	91
regions (James, 1970). Such spatial body size gradients have been found to be	92
prevalent in endotherms, both at the intraspecific (Rensch, 1938; James, 1970;	93
Ashton, Tracy & de Queiroz, 2000; Meiri & Dayan, 2003; <i>cf</i> . Riemer, Gurlanick &	94
White, 2018) and interspecific (Blackburn & Hawkins, 2004; Olson et al., 2009;	95
Torres-Romero, Morales-Castilla & Olalla-Tárraga, 2016) scales. In contrast, decades	96
of research conducted on a wide range of ectothermic organisms have uncovered	97
mixed support for climate-driven size clines either at the intraspecific (Ashton $\&$	98
Feldman, 2003; Adams & Church, 2008; Pincheira-Donoso, 2010; Pincheira-Donoso &	99
Meiri, 2013; Zamora-Camacho, Reguera & Morena-Rueda, 2014) or interspecific	100
(Olalla-Tárraga, Rodríguez & Hawkins, 2006; Olalla-Tárraga & Rodríguez, 2007;	101
Pincheira-Donoso, Hodgson & Tregenza, 2008; Terribile, Olalla-Tárraga, Diniz-Filho &	102

Rodríguez, 2009; Feldman & Meiri, 2014; Vinarski, 2014; Slavenko & Meiri, 2015;103Rodrigues, Olalla-Tárraga, Iverso & Diniz-Filho, 2018) levels.104

The lack of consistency in the attempts to identify prevalent drivers of body size 105 evolution in ectotherms may be partly due to the lack of applicability of the heat-106 related mechanism (*i.e.*, Bergmann's original explanation) to ectotherms (Pincheira-107 Donoso et al., 2008; Meiri, 2011; Slavenko & Meiri, 2015). Bergmann (1847) posited 108 that reduced surface area-to-volume ratio in larger animals benefits heat 109 conservation in colder climates, a mechanism sometimes known as the 'heat 110 conservation hypothesis'. However, ectotherms produce negligible amounts of 111 metabolic heat, and reduced surface area-to-volume ratios might result in less 112 efficient thermoregulation in cold climates due to slower heating rates. Therefore, a 113 trade-off exists between heat gain (more efficient in smaller ectotherms; Carothers, 114 Fox, Marquet & Jaksic, 1997) and retention (more efficient in large ectotherms; 115 Zamora-Camacho et al., 2014). Thus, large body size in colder climates is predicted to 116 compromise the need to achieve optimal body temperatures to initiate basic fitness-117 related activities in the first place (Pincheira-Donoso *et al.*, 2008). 118

Alternative mechanisms for climate-driven body size-clines may be more 119 applicable to ectotherms. The 'heat balance hypothesis' (Olalla-Tárraga et al., 2006) 120 predicts that thermoconformers exhibit a reverse pattern to the one predicted by 121 Bergmann's rule, i.e. smaller bodies at lower temperatures because of the effect of 122 body size on heating rates. The 'water availability hypothesis' (Ashton, 2002) 123 suggests that large sizes, thus, small surface area-to-volume ratios, are beneficial in 124 conserving water in dry habitats (especially for animals with permeable skins such as 125 126 amphibians). Therefore, large size is predicted to be selected for in arid climates. The

'starvation resistance hypothesis' (Lindsey, 1966; Boyce, 1979) and the 'seasonality 127 hypothesis' (Van Voorhies, 1996; Mousseau, 1997) both posit that seasonality drives 128 size clines. The former suggests that large size is selected for in seasonal 129 environments, as it allows for accumulation of food reserves to survive periods of 130 food scarcity. The latter suggests that short growing seasons in highly seasonal 131 climates lead to maturation at smaller size. The 'primary productivity hypothesis' 132 (Rosenzweig, 1968; Yom-Tov & Geffen, 2006) suggests that increased productivity 133 allows for the evolution of larger body sizes, which can be maintained by the 134 abundance of available food (Huston & Wolverton, 2011). These hypotheses are not 135 mutually exclusive, and the different putative climatic drivers of size evolution 136 covary across space. 137

We addressed a range of core hypotheses on the relationship between climate 138 and body size globally across squamates, the largest order of land vertebrates 139 (~10,350 species; Uetz, Freed & Hošek, 2018). Squamates are found on all continents 140 except Antarctica. Their distribution patterns differ considerably from other land 141 vertebrate groups, showing increased affinity for hot, arid regions (Roll et al., 2017). 142 However, most studies on climatic size clines in squamates have been conducted on 143 species from temperate regions (e.g., Ashton & Feldman, 2003; Olalla-Tárraga et al., 144 2006; Pincheira-Donoso, Tregenza & Hodgson, 2007). Therefore, the more limited 145 scale of existing studies is unlikely to be representative of squamates, either 146 phylogenetically (*i.e.*, many families are not represented there), or geographically 147 (*i.e.*, the whole range of climatic conditions experienced by squamates is not 148 represented). Patterns detected might thus merely represent local or regional 149 trends. 150

Squamates in temperate regions often exhibit unique adaptations to cold	151
conditions (<i>e.g.</i> , Churchill & Storey, 1992; Voituron, Storey, Grenot & Storey, 2002;	152
Berman, Bulakhova, Alfimov & Mescheryakova, 2016). Such adaptations (e.g.,	153
prolonged hibernation) may mask or weaken climatic effects on body size	154
(Scholander, 1955). Furthermore, the small number of species in such regions might	155
lead to spatial patterns being driven by a few wide-ranging unusually small or	156
unusually large species (Slavenko & Meiri, 2015).	157

Crucially, while global-scale studies on size clines in endotherms have been158conducted (birds, Olson *et al.*, 2009; mammals, Riemer *et al.*, 2018), to date, only a159few studies have examined global size clines of an entire large clade of ectotherms160(apart from turtles; Angielczyk, Burroughs & Feldman, 2015; Rodrigues *et al.*, 2018),161making it impossible to infer a universal effect of climate on body size.162

Our goals were to: a) examine the spatial patterns in body sizes of squamates; b)163test the leading current hypotheses linking body size and climate; and c) test164whether we find consistent support for these hypotheses across phylogenetic and165spatial scales. If climate consistently affects ectotherms' body sizes, we expect to166find qualitatively similar relationships between body size and the climatic variables167we examine, across squamate phylogeny and across space, and using different168methods (i.e., with either the species or the grid cell as the focus of analyses).169

METHODS DATA COLLECTION 170

171

172

We used body mass (Feldman, Sabath, Pyron, Mayrose & Meiri, 2016) and173distribution data (Roll *et al.*, 2017) for ~95% (9,733 species) of the currently174

described species of extant squamates (Uetz et al., 2018). We used mass as our 175 measure of body size instead of other measures, such as SVL or total length, as these 176 cannot be easily compared between clades that differ greatly in their bauplan (see 177 e.g. figure S2c in Feldman et al., 2016, where squamates of similar length differ by 2 178 orders of magnitude in mass). The mass data in Feldman et al. (2016) are size 179 maxima of squamate species, irrespective of sex, derived from SVL using clade-180 specific length-mass allometric equations. Size maxima were used instead of means, 181 as they are more readily available in the literature, and also likely well represent the 182 potential sizes attainable by squamates, which have indeterminate growth. We log₁₀-183 transformed the mass data to normalize the otherwise strongly right-skewed body 184 size distribution (Feldman et al., 2016). We used global temperature and 185 precipitation data for the 1979-2013 time period at 30 arc-second resolution 186 (CHELSA; Karger et al., 2017). These were used to test three hypotheses: the 'heat 187 balance' hypothesis, using mean annual temperature (in degrees Celsius; BIO1); the 188 'water conservation' hypothesis, using mean annual precipitation (in mm/year; 189 BIO12); and the 'seasonality' hypothesis, using both temperature seasonality (annual 190 range in degrees Celsius; BIO4) and precipitation seasonality (annual range in 191 mm/year; BIO15). We also used global net primary productivity (NPP, in grams of 192 carbon / [year * m²]) data for 1995 (SEDAC; Imhoff et al., 2004) to test the 'primary 193 productivity' hypothesis. We tested these four hypotheses using two analytical 194 approaches (assemblage-level and species-level; see below). All statistical analyses 195 were performed in R v3.4.2 (R Core Team, 2017). 196

197

ASSEMBLAGE-LEVEL APPROACH

As squamate body size shows a strong phylogenetic signal (Blomberg, Garland Jr. 199 & Ives, 2003; Feldman et al., 2016), we accounted for phylogenetic non-200 independence using the Lynch method (Lynch, 1991). We used the variance-201 covariance matrix derived from the latest species-level phylogeny of squamates 202 (Tonini, Beard, Ferreira, Jetz & Pyron, 2016) to fit a linear mixed effects model, with 203 body mass as the response and species identity mapped as a random effect, using 204 the Imekin function in the 'coxme' R package (Therneau, 2018). We omitted from the 205 analysis 41 species not included in the phylogeny. We treated the predicted values of 206 this model as the phylogenetic components of mass, attributed to shared 207 evolutionary history. The body size residuals from the phylogenetic components 208 were treated as the species components (the component of mass for each species 209 that cannot be explained by shared ancestry). We then overlaid the range maps for 210 all squamates (from Roll et al. 2017) onto an equal-area 96x96 km grid in a 211 Behrmann equal-area projection (roughly 0.86x0.86 degrees at the Equator) in 212 ArcGIS 10.0 (ESRI) and calculated the median of the species components for the 213 species assemblage in each grid cell. We also calculated the mean value of each of 214 our environmental predictors across the cell. We omitted island cells (all landmasses 215 smaller than Australia) from this analysis in order to remove the potential bias to our 216 results from effects of insularity on body size evolution (e.g., Itescu et al., 2018). 217

To account for spatial autocorrelation in the data, we fitted spatial autoregressive 218 (SAR) models (Dormann *et al.*, 2007). We defined the neighbourhood distance as the 219 distance (in km) at which global (or continental, in the continent analyses) Moran's I 220 dropped to 0, based on correlograms generated using the *correlog* function in the 221 'pgirmess' package (Giraudoux, 2017; Fig. S1.5-S1.8). We then ran multiple-predictor 222

SAR models using the <i>errorsarlm</i> function in the 'spdep' package (Bivand et al.,	223
2011), with median species component per grid cell as the response variable and the	224
five environmental predictors. All Variance Inflation Factor (VIF) values were below	225
4.	226

To test whether the influence of environmental predictors is consistent across 227 scales, we performed several complementary analyses. First, we divided the dataset 228 into continents (Africa, Asia, Australia, Europe, North America, and South America). 229 We preferred delimitation to continents over biogeographical realms as preliminary 230 evidence suggests that squamates do not adhere well to the classical realm 231 boundaries (Maria Novosolov, pers. comm.). We then reran the SAR models, using 232 the same procedure to determine neighbourhood distance, for each continent. Next, 233 we analyzed lizards (including amphisbaenians) and snakes separately using the 234 same method. We then further divided squamates into families and analyzed all 44 235 families with at least 10 species (that are not island-endemic) separately using the 236 237 same method (see Table S1.1 in Supporting Information).

Species richness patterns can strongly affect size clines, with assemblage means 238 and medians, particularly in low-richness cells, often being sensitive to extremely 239 large or small-bodied species (Meiri & Thomas, 2007). We therefore used a 240 permutation approach to test if size clines could arise from spurious effects of 241 richness patterns (Olson et al., 2009; Slavenko & Meiri, 2015). We randomly drew 242 species from a pool of all squamates, without replacement, to occupy cells while 243 maintaining the original richness distribution. The probability of drawing species 244 from the pool was weighted by each species' range size (from Roll et al., 2017). We 245 then calculated the median species component for each random assemblage per 246

intervals from the resultant random distributions of median species component per248cell, to test whether observed median species components are lower, or higher, than249expected from their richness values.250SPECIES-LEVEL APPROACH252We used multiple-predictor phylogenetic generalized least square (PGLS)253regressions (Grafen, 1989), using the log10-transformed mass of each species as the254response variable (after omitting all insular endemic species and species across255whose ranges we were lacking predictor variables), the mean of each environmental256variable across each species' range as predictors, and the latest phylogeny of257
cell, to test whether observed median species components are lower, or higher, than249expected from their richness values.250SPECIES-LEVEL APPROACH252We used multiple-predictor phylogenetic generalized least square (PGLS)253regressions (Grafen, 1989), using the log10-transformed mass of each species as the254response variable (after omitting all insular endemic species and species across255whose ranges we were lacking predictor variables), the mean of each environmental256variable across each species' range as predictors, and the latest phylogeny of257
expected from their richness values.250SPECIES-LEVEL APPROACH252We used multiple-predictor phylogenetic generalized least square (PGLS)253regressions (Grafen, 1989), using the log10-transformed mass of each species as the254response variable (after omitting all insular endemic species and species across255whose ranges we were lacking predictor variables), the mean of each environmental256variable across each species' range as predictors, and the latest phylogeny of257
251 SPECIES-LEVEL APPROACH 252 We used multiple-predictor phylogenetic generalized least square (PGLS) 253 regressions (Grafen, 1989), using the log10-transformed mass of each species as the 254 response variable (after omitting all insular endemic species and species across 255 whose ranges we were lacking predictor variables), the mean of each environmental 256 variable across each species' range as predictors, and the latest phylogeny of 257
SPECIES-LEVEL APPROACH 252 We used multiple-predictor phylogenetic generalized least square (PGLS) 253 regressions (Grafen, 1989), using the log10-transformed mass of each species as the 254 response variable (after omitting all insular endemic species and species across 255 whose ranges we were lacking predictor variables), the mean of each environmental 256 variable across each species' range as predictors, and the latest phylogeny of 257
We used multiple-predictor phylogenetic generalized least square (PGLS)253regressions (Grafen, 1989), using the log10-transformed mass of each species as the254response variable (after omitting all insular endemic species and species across255whose ranges we were lacking predictor variables), the mean of each environmental256variable across each species' range as predictors, and the latest phylogeny of257
regressions (Grafen, 1989), using the log10-transformed mass of each species as the254response variable (after omitting all insular endemic species and species across255whose ranges we were lacking predictor variables), the mean of each environmental256variable across each species' range as predictors, and the latest phylogeny of257
response variable (after omitting all insular endemic species and species across255whose ranges we were lacking predictor variables), the mean of each environmental256variable across each species' range as predictors, and the latest phylogeny of257
whose ranges we were lacking predictor variables), the mean of each environmental 256 variable across each species' range as predictors, and the latest phylogeny of 257
variable across each species' range as predictors, and the latest phylogeny of 257
squamates (Tonini <i>et al.</i> , 2016) to estimate the expected covariance structure. After 258
omitting from the analysis 2,695 island-endemic species to remove a potential 259
insularity bias, and a further 701 species that were either not included in the 260
phylogeny or with missing data, we were left with 6,323 species. We ran the PGLS 261
models under a Brownian motion model of evolution and calculated the maximum 262
likelihood estimates of Pagel's λ , a measure of phylogenetic signal in the data 263
ranging from 0 (no signal) to 1 (strong phylogenetic signal under a Brownian motion 264
model of evolution), with the <i>pgls</i> function in the 'caper' package (Orme <i>et al.</i> , 265
2012). 266
This approach ignores spatial variation in the environmental predictor variables, 267

which can be substantial in extremely wide-ranging species. We therefore reran the 268 PGLS analyses after omitting those species with the 10% largest range sizes (leaving 269 5,691 species), which would be most heavily biased by averaging out environmental 270

predictors across their ranges, and compared the results of this analysis to those of	271
the complete dataset.	272
In a complementary analysis, we compared independent size and climate	273
contrasts of all 1,456 sister-species pairs recovered from the phylogeny. While this	274
greatly reduces sample size, it also eliminates phylogenetic dependence, as any	275
differences between sister species in body size do not result from shared	276
evolutionary history (Felsenstein, 1985), and compares species that tend to resemble	277
each other most in traits that likely affect body size (Bergmann, 1847). We ran linear	278
regressions through the origin of contrasts in mass between sister species against	279
contrasts in each of the five environmental predictors between sister species, and	280
tested for significance with a conservative alpha of 0.005 (Johnson, 2013; Benjamin	281
et al., 2018).	282
	283
RESULTS	284
ASSEMBLAGE-LEVEL APPROACH	285
Our analyses failed to identify a consistent latitudinal pattern in squamate body	286
size across different regions of the globe. Squamate assemblage body mass is largest	287
in the northern latitudes of North America, most of South America, inland Africa and	288
the Indian Subcontinent (Fig. 1a; Fig. S1.1). It is small in most of northern Eurasia, the	289
Sahel and the Horn of Africa, and in western and central Australia. Squamate species	290
components are positively correlated with mean annual temperature, mean annual	291
precipitation and NPP, and negatively correlated with precipitation seasonality	292

correlated with the ratio of lizards to snakes in each cell – squamate assemblages are	294
large-sized in cells dominated by snakes, and small-sized in cells where most species	295
are lizards (Fig. 1b; SAR of adaptive component against lizard proportion,	296
standardised β = -0.36, p < 0.001, Nagelkerke's pseudo- R^2 = 0.39). The pattern is	297
clear even when accounting for phylogenetic non-independence by comparing	298
species components, but is even more pronounced when examining the uncorrected	299
mass data (Fig. S1.1).	300

Size-climate relationships are not geographically consistent – continent-level301analyses recovered models with different sets of predictors, with opposite302correlation signs, and with extremely different effect sizes, for each continent (Table3031). For instance, mean annual temperature was positively correlated with squamate304mass in Asia, Europe and South America, but negatively correlated with mass in305Australia and North America, and uncorrelated with mass in Africa (α = 0.005).306

Further inconsistencies were found in the separate analyses of snakes and lizards 307 (Table 1; Fig. 1c,d). Globally, lizard mass is positively correlated with mean annual 308 temperature and seasonality in precipitation, and negatively correlated with 309 seasonality in temperature. On the other hand, snake mass is positively correlated 310 with mean annual temperature, and negatively correlated with mean annual 311 precipitation and seasonality in temperature and precipitation globally. Body mass of 312 neither snakes nor lizards is correlated with NPP. As with the global squamate 313 models, snake and lizard continent-level models are substantially different to each 314 other (Table 1). 315

Family-level models also show large inconsistencies (Table S1.1). Each predictor316was non-significant in 27-34% of the family models (across the 44 families with > 10317

species), but often not in the same families (e.g., mean temperature and NPP were 318 non-significant in 18 families each, but only in five of these were they both non-319 significant). When the predictors were significantly correlated with mass, the 320 correlations often had opposite directions between families. For each of the 321 predictors, positive correlations were found with mass in 27-41% of families, and 322 negative correlations were found in 27-43% of the families (Fig. S1.4). Only four pairs 323 of families had qualitatively identical models: Leiosauridae-Leptotyphlopidae, 324 Hoplocercidae-Elapidae, Iguanidae-Colubridae, and Amphisbaenidae-Eublepharidae. 325 These families are phylogenetically and ecologically very far from one another. All 326 other family models were unique. These results hold even if we analyze only families 327 with over 30 species. In this more restrictive dataset of 33 families, each predictor 328 was non-significant in 27-36% of the models, positively correlated with mass in 24-329 45% of families, and negatively correlated with mass in 27-45% of families. There 330 was no significant correlation between the species richness of a family and the 331 number of significant predictors in its model (linear regression; p = 0.33). 332

The permutation analyses showed that most of the observed median species 333 components within cells could be expected by random processes of community 334 assembly. In fact, only ~7% of lizard cells and ~11.5% of snake cells deviate from the 335 95% confidence intervals of the random distributions (Fig. 2; Fig. S1.2). These cells 336 comprise somewhat distinct geographical units (Fig. 3; Fig. S1.3). Lizards are smaller 337 than expected in many of the most species-rich cells (Fig. 2a; Fig. S1.2a), especially in 338 Australia, and also in the Horn of Africa and along the coasts of South America. They 339 are larger than expected in central South America, inland Africa and the northwest of 340 the Indian subcontinent. Meanwhile, snakes are smaller than expected in western 341

SPECIES-LEVEL APPROACH	347
	346
lizards and snakes larger, or smaller, than expected by chance (Fig. 3c).	345
Eurasia, and southeastern Australia. Only in very few cells in East Africa are both	344
and larger than expected in central and northern South America, much of northern	343
Australia, eastern Asia, some parts of the central Asian steppes, and inland Africa,	342

Our PGLS analyses revealed a positive relationship between squamate mass and	348
temperature seasonality, and a negative relationship between mass and	349
precipitation seasonality (at α = 0.005; Table 2). The phylogenetic signal in the model	350
was very strong (λ = 0.93), but the overall explanatory power was extremely low (R^2	351
= 0.01). Omitting the widest-ranging species from the dataset caused a marked	352
change – the relationship with seasonality in temperature became nonsignificant,	353
but the positive correlation with mean annual precipitation became significant. All	354
other model parameters changed only slightly (λ = 0.92, R^2 = 0.02). NPP and mean	355
annual temperature were not significantly correlated with mass in any of the	356
models.	357
In the sister-species analysis we found a negative correlation between squamate	250

In the sister-species analysis we found a negative correlation between squamate	338
mass and precipitation seasonality, and no significant correlations with any of the	359
other predictor variables (Fig. 4). However, this model also had extremely low	360
explanatory power ($R^2 = 0.01$).	361

363

364

DISCUSSION

ASSEMBLAGE-LEVEL APPAROACH

Our study provides the first truly global-scale analysis of the spatial patterns of365body size variation in squamates, the most speciose group among modern tetrapods,366as a function of multiple alternative climatic predictors. Our combined evidence from367multiple analytic approaches suggests that climate consistently fails to have an368identifiable effect on spatial patterns of squamate size.369

Our core finding shows that spatial patterns in squamate body sizes are both 370 weak and inconsistent across phylogenetic and spatial scales. We thus conclude that 371 climate exerts weak direct selection pressure on squamate sizes, at least at the 372 examined, interspecific scales (but see also Pincheira-Donoso & Meiri, 2013, for 373 intraspecific comparisons). While squamates seem to display a global trend of 374 decreasing in size towards the poles (or a 'reverse Bergmann' pattern; Fig. 1a), this 375 pattern is weak and inconsistent across regions and lineages. Squamates are 376 generally larger in the New World, and the northernmost cells of North America 377 contain assemblages with the largest median sizes. This global pattern seems to be 378 most strongly explained by the ratio of lizard to snake species in each cell. The body 379 size distribution of squamates is strongly bimodal (Feldman et al., 2016), as snakes 380 381 are, on average, larger than lizards. Snakes and lizards also differ in their spatial distribution patterns (Roll et al., 2017). Snakes show the common tetrapod pattern 382 of richness peaking in the tropics, whereas lizard richness peaks in warm, arid 383 regions, particularly Australia. Thus, squamates are, on average, large in snake-rich 384 cells (e.g., the Amazon Basin and Canada), and small in lizard-rich cells (e.g., 385 Australia). The global latitudinal size patterns for lizards and snakes are similarly 386 unclear, with the strongest seeming to be a fall (in lizards) and rise (in snakes) of 387 body size in the northernmost latitudes (Fig 1c,d). This is likely due to the effect of 388 the very few, wide-ranging species, inhabiting extreme latitudes in the Northern389hemisphere (e.g., Zootoca vivipara and Vipera berus are the only lizard and snake390species, respectively, in much of northern Eurasia, and the snake Thamnophis sirtalis391is the only squamate species in much of northern North America). The inconsistency392in patterns and in relationships with the climatic variables is especially pronounced393at the continent- and family-level analyses. No single climatic variable displays a394consistent relationship with squamate mass across scales.395

Overall, the support for the various hypotheses on climate-driven size evolution is 396 weak. Correlations consistent with all different hypotheses were found for all of the 397 hypotheses, but for none of them were these patterns consistent across scales and 398 models. The only correlation recovered in all global models (squamates, lizards, and 399 snakes) was a positive correlation between mass and mean temperature, which 400 would be consistent with 'heat balance hypothesis' under the assumption that all 401 squamates are thermoconformers. This, however, is a problematic assumption – 402 most squamates engage in thermoregulatory behaviour and are quite adept at 403 maintaining body temperatures higher than their surroundings (Meiri et al., 2013). In 404 405 the continent level analyses, the only hypotheses supported for a majority of models were the 'heat balance hypothesis' which was supported in five of six continents for 406 lizards, and the 'starvation resistance hypothesis' which was supported in five of six 407 continents for snakes, and the 'water availability', 'seasonality' and the 'primary 408 productivity' hypotheses, which were all supported in 53% of snake families. Note, 409 however, that hypotheses supported in most continents for snakes were never 410 supported in most continents for lizards and vice-versa. No hypothesis was 411 supported for most families in lizards or the Squamata as a whole. 412

PERMUTATION ANALYSES

The results of our permutation tests show that almost all median species	415
components per cell fall within the expected values, if species were assigned to cells	416
by chance. This is markedly different from the result for birds, where many cell	417
assemblages cannot be explained by random processes (Olson et al., 2009), yet are	418
similar to results for amphibians (Slavenko & Meiri, 2015). While this finding does	419
not necessarily imply that current size distributions were generated by random	420
processes alone (<i>i.e.</i> , our null model may be affected by the intrinsic imperfection of	421
null models in general; Gotelli, 2001), we cannot reject the null hypothesis. The	422
relationship between species richness and the median body size within cells is	423
complex. Body sizes may be either extremely large or extremely small in cells with	424
low richness values purely by chance, and squamate richness tends to be strongly	425
correlated with climatic variables (<i>e.g.,</i> Costa, Nogueira, Machado & Colli, 2007;	426
Powney, Grenyer, Orme, Owens & Meiri, 2010; Morales-Castilla et al., 2011; Lewin et	427
al., 2016). This poses a severe limitation for inference using any grid-cell based	428
analysis, as even large-scale, statistically significant spatial patterns in body size may	429
be merely spurious patterns, particularly due to species' co-occurrence in multiple	430
cells (Hawkins <i>et al.,</i> 2017).	431

Interestingly, the cells which deviate from random expectations are not randomly432distributed across the globe but seem to form distinct geographical units (Fig. 3).433Investigating the composition of squamate communities in these habitats might be a434promising avenue for uncovering the causes. For instance, lizards in Australian435

deserts are much smaller than expected by chance (Fig. 3a). Lizard richness peaks in 436 arid Australia (Powney et al., 2010; Roll et al., 2017), and Australia's lizard fauna is 437 dominated by skinks (Cogger, 2014), which are generally small-bodied (Meiri, 2008). 438 An additional example is the higher than expected mass of snakes in a large portion 439 of the southern Amazon Basin (Fig. 3b). Patterns of body size distribution in South 440 American snake assemblages are strongly affected by the contribution of the three 441 most species-rich lineages: colubrids, xenodontines and dipsadids. Colubrid and 442 xenodontine snakes (median mass 68.3 g) are much larger than dipsadids (median 443 mass 35.4 g), and in the southern Amazon snake faunas are dominated by a 444 combination of xenodontines and colubrids (see Fig. 25.6 in Cadle & Greene, 1993). 445 Only in few places on the globe, however, are both lizards and snakes either smaller, 446 or larger, than expected by chance (Fig. 3c), again demonstrating remarkable 447 inconsistency in spatial body size patterns between the two groups. 448

449

SPECIES-LEVEL APPROACH

450

Our species-level analyses confirm the finding that body size among squamates	451
varies independently from variation in climate. While we did find correlations	452
between mass and our examined climatic variables, their explanatory power is	453
extremely low, and most size variation is explained by shared ancestry. This is similar	454
to previous findings in amphibians (Slavenko & Meiri, 2015).	455

Our study also serves as a demonstration of the importance of considering scale456in ecological studies, both spatial (Wiens, 1989; Chave, 2013) and phylogenetic457(Graham, Storch & Machac, 2018). Had we considered only the global scale analyses,458

we might have concluded that there is support for a reverse Bergmann's rule in	459
squamate sizes. Only by examining our data across differing scales were we able to	460
discern the inconsistency in patterns and realize that the global pattern is probably	461
driven by assemblage structure. In this case, our global scale analyses were a classic	462
case of comparing apples to oranges, considering the stark size differences between	463
continents, between lizards and snakes, and between different lineages within these	464
groups.	465

We acknowledge that the interspecific approach ignores size variation at the 466 intraspecific level, arguably a more relevant scale for examinations of climate-driven 467 size evolution (Meiri, 2011). Some species indeed show intraspecific trends in size 468 consistent with climate-driven size evolution, particularly along elevational gradients 469 (e.g., Zamora-Camacho et al., 2014; cf. Pincheira-Donoso & Meiri, 2013). However, 470 data on range-wide intraspecific size variation are lacking for most squamate species. 471 Testing intraspecific relationships between climate and body size on a large sample 472 of squamates is beyond the scope of this work, though we acknowledge climate 473 might be an important factor shaping body size at this level. We doubt, however, 474 that the effects would be consistently predictable by any 'ecological rule' and 475 suspect they might be idiosyncratic and depend heavily on the natural history of 476 each examined species. 477

478

CONCLUSIONS

479

Collectively, our results suggest that climate is likely not an important driver of480size evolution in squamates as a group, despite exerting a strong influence on their481

spatial distribution (Roll et al., 2017), and therefore likely affecting spatial size 482 distributions by proxy. This is consistent with similar results for amphibians (Slavenko 483 & Meiri, 2015), and may be the case for terrestrial ectotherms in general. Recently, 484 Riemer et al. (2018) analysed an impressively large dataset of mammals and birds, 485 and concluded that there is little support for a general relationship between mass 486 and temperature in endotherms, despite previous evidence to the contrary (Ashton 487 et al., 2000; Meiri & Dayan, 2003). While these results do not mean that 488 temperature, and other climatic variables, do not exert selection pressure on body 489 size (and indeed they may apply to some taxa), they do raise questions as to the 490 generality of such evolutionary mechanisms across all taxa. This is not to imply that 491 492 climate is not an important driver of size evolution, but rather that the causative mechanisms of size evolution may be idiosyncratic and strongly lineage- and 493 location-dependent. While this conclusion does pose a difficulty for generalization, it 494 also creates a promising avenue for future research of size evolution on a case-by-495 case basis, and on multiple spatial and phylogenetic scales. In any event, we advise 496 caution in adopting such climate-size relationships as general 'rules', at the very least 497 until their generality has been properly tested on large, extensive datasets. 498

REFERENCES	500
Adams, D.C. & Church, J.O. (2008) Amphibians do not follow Bergmann's rule.	501
Evolution, 62 , 413-420.	502
Angielczyk, K.D., Burroughs, R.W. & Feldman, C. (2015) Do turtles follow the rules?	503
Latitudinal gradients in species richness, body size, and geographic range area	504
of the world's turtles. Journal of Experimental Zoology Part B: Molecular and	505
Developmental Evolution, 324 , 270-294.	506
Ashton, K.G. (2002) Do amphibians follow Bergmann's rule? Canadian Journal of	507
Zoology, 80 , 708-716.	508
Ashton, K.G. & Feldman, C.R. (2003) Bergmann's rule in nonavian reptiles: turtles	509
follow it, lizards and snakes reverse it. <i>Evolution</i> , 57 , 1151-1163.	510
Ashton, K.G., Tracy, M.C. & de Queiroz, A. (2000) Is Bergmann's rule valid for	511
mammals? The American Naturalist, 156, 390-415.	512
Benjamin, D.J., Berger, J.O., Johannesson, M., Nosek, B.A., Wagenmakers, EJ., Berk,	513
R., Bollen, K.A., Brembs, B., Brown, L., Camerer, C., Cesarini, D., Chambers,	514
C.D., Clyde, M., Cook, T.D., De Boeck, P., Dienes, Z., Dreber, A., Easwaran, K.,	515
Efferson, C., Fehr, E., Fidler, F., Field, A.P., Forster, M., George, E.I., Gonzalez,	516
R., Goodman, S., Green, E., Green, D.P., Greenwald, A., Hadfield, J.D., Hedges,	517
L.V., Held, L., Ho, T.H., Hoijtink, H., Hruschka, D.J., Imai, K., Imbens, G.,	518
Ioannidis, J.P.A., Jeon, M., Jones, J.H., Kirchler, M., Laibson, D., List, J., Little,	519
R., Lupia, A., Machery, E., Maxwell, S.E., McCarthy, M., Moore, D., Morgan,	520
S.L., Munafó, M., Nakagawa, S., Nyhan, B., Parker, T.H., Pericchi, L., Perugini,	521
M., Rouder, J., Rousseau, J., Savalei, V., Schöbrodt, F.D., Sellke, T., Sinclair, B.,	522
Tingley, D., Van Zandt, T., Vazire, S., Watts, D.J., Winship, C., Wolpert, R.L.,	523

Xie, Y., Young, C., Zinman, J. & Johnson, V.E. (2018) Redefine statistical	524
significance. Nature Human Behaviour, 2 , 6-10.	525
Bergmann, C. (1847) Uber die Verhaltnisse der Warmeokonomie der Thiere zu ihrer	526
Grosse. <i>Göttinger Studien</i> , 3 , 595-708.	527
Berman, D.I., Bulakhova, N.A., Alfimov, A.V. & Mescheryakova, E.N. (2016) How the	528
most northern lizard, Zootoca vivipara, overwinters in Siberia. Polar Biology,	529
39 , 2411-2425.	530
Bivand, R., Anselin, L., Berke, O., Bernat, A., Carvalho, M., Chun, Y., Dormann, C.,	531
Dray, S., Halbersma, R. & Lewin-Koh, N. (2011) spdep: Spatial dependence:	532
weighting schemes, statistics and models. Available at: http://CRAN.R-	533
project.org/package=spdep.	534
Blackburn, T.M. & Hawkins, B.A. (2004) Bergmann's rule and the mammal fauna of	535
northern North America. <i>Ecography</i> , 27 , 715-724.	536
Blomberg, S.P., Garland Jr., T. & Ives, A.R. (2003) Testing for phylogenetic signal in	537
comparative data: behavioral traits are more labile. <i>Evolution</i> , 57 , 717-745.	538
Boyce, M.S. (1979) Seasonality and patterns of natural selection for life histories. The	539
American Naturalist, 114 , 569-583.	540
Cadle, J.E. & Greene, H.W. (1993) Phylogenetic patterns, biogeography, and the	541
ecological structure of Neotropical snake assemblages. Species diversity in	542
ecological communities: historical and geographical perspectives. (ed. by R.E.	543
Ricklefs and D. Schulter), pp. 281-293. University of Chicago Press, Chicago,	544
Illinois.	545

Carothers, J.H., Fox, S.F., Marquet, P.A. & Jaksic, F.M. (1997) Thermal characteristics	546
of ten Andean lizards of the genus Liolaemus in central Chile. Revista Chilena	547
de Historia Natural, 70 , 297-309.	548
Chave, J. (2013) The problem of pattern and scale in ecology: what have we learned	549
in 20 years? <i>Ecology Letters</i> , 16 , 4-16.	550
Churchill, T.A. & Storey, K.B. (1992) Freezing survival of the garter snake Thamnophis	551
sirtalis parietalis. Canadian Journal of Zoology, 70, 99-105.	552
Cogger, H.G. (2014) Reptiles and amphibians of Australia, 7th edn. CSIRO Publishing,	553
Melbourne, Australia.	554
Costa, G.C., Nogueira, C., Machado, R.B. & Colli, G.R. (2007) Squamate richness in the	555
Brazilian Cerrado and its environmental-climatic associations. Diversity and	556
<i>Distributions</i> , 13 , 714-724.	557
Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies,	558
R.G., Hirzel, A., Jetz, W. & Kissling, W.D. (2007) Methods to account for spatial	559
autocorrelation in the analysis of species distributional data: a review.	560
<i>Ecography,</i> 30 , 609-628.	561
Feldman, A. & Meiri, S. (2014) Australian snakes do not follow Bergmann's rule.	562
Evolutionary Biology, 41 , 327-335.	563
Feldman, A., Sabath, N., Pyron, A.R., Mayrose, I. & Meiri, S. (2016) Body-sizes and	564
diversification rates of lizards, snakes, amphisbaenians and the tuatara.	565
Global Ecology and Biogeography, 25 , 187-197.	566
Felsenstein, J. (1985) Phylogenies and the comparative method. The American	567
Naturalist, 125 , 1-15.	568

Gillooly, J.F., Brown, J.H., West, G.B., Savage, V.M. & Charnov, E.L. (2001) Effects of	569
size and temperature on metabolic rate. Science, 293, 2248-2251.	570
Giraudoux, P. (2017) pgirmess: Data analysis in ecology. R package version 1.6.7.	571
Available at: http://CRAN.R-project.org/package=pgirmess.	572
Gotelli, N.J. (2001) Research frontiers in null model analysis. Global Ecology and	573
<i>Biogeography</i> , 10 , 337-343.	574
Grafen, A. (1989) The phylogenetic regression. Philosophical Transactions of the	575
Royal Society B: Biological Sciences, 326 , 119-157.	576
Graham, C.H., Storch, D. & Machac, A. (2018) Phylogenetic scale in ecology and	577
evolution. Global Ecology and Biogeography, 27, 175-187.	578
Hawkins, B.A., Leroy, B., Rodríguez, M.Á., Singer, A., Vilela, B., Villalobos, F., Wang, X.	579
& Zelený, D. (2017) Structural bias in aggregated species-level variables	580
driven by repeated species co-occurrences: a pervasive problem in	581
community and assemblage data. Journal of Biogeography, 44, 1199-1211.	582
Huston, M.A. & Wolverton, S. (2011) Regulation of animal size by eNPP, Bergmann's	583
rule and related phenomena. <i>Ecological Monographs</i> , 81 , 349-405.	584
Imhoff, M.L., Bounoua, L., Ricketts, T., Loucks, C., Harriss, R. & Lawrence, W.T. (2004)	585
Global patterns in human consumption of net primary production. Nature,	586
429 , 870-873.	587
Itescu, Y., Schwarz, R., Donihue, C.M., Slavenko, A., Roussos, S.A., Sagonas, K.,	588
Valakos, E.D., Foufopoulos, J., Pafilis, P. & Meiri, S. (2018) Inconsistent	589
patterns of body size evolution in co-occurring island reptiles. Global Ecology	590
and Biogeography, 27 , 538-550.	591

James, F.C. (1970) Geographic size variation in birds and its relationship to climate.	592
Ecology, 51 , 365-390.	593
Johnson, V.E. (2013) Revised standards for statistical evidence. Proceedings of the	594
National Academy of Sciences, 110, 19313-19317.	595
Karger, D.N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R.W.,	596
Zimmermann, N.E., Linder, H.P. & Kessler, M. (2017) Climatologies at high	597
resolution for the earth's land surface areas. Scientific Data, 4, 170122.	598
Lewin, A., Feldman, A., Bauer, A.M., Belmaker, J., Broadley, D.G., Chirio, L., Itescu, Y.,	599
LeBreton, M., Maza, E., Meirte, D., Nagy, Z.T., Novosolov, M., Roll, U.,	600
Tallowin, O., Trape, JF., Vidan, E. & Meiri, S. (2016) Patterns of species	601
richness, endemism and environmental gradients of African reptiles. Journal	602
of Biogeography, 43 , 2380-2390.	603
Lindsey, C.C. (1966) Body sizes of poikilotherm vertebrates at different latitudes.	604
Evolution, 20 , 456-465.	605
Lynch, M. (1991) Methods for the analysis of comparative data in evolutionary	606
biology. <i>Evolution</i> , 45 , 1065-1080.	607
Meiri, S. (2008) Evolution and ecology of lizard body sizes. Global Ecology and	608
Biogeography, 17 , 724-734.	609
Meiri, S. (2011) Bergmann's Rule – what's in a name? <i>Global Ecology and</i>	610
Biogeography, 20 , 203-207.	611
Meiri, S. & Dayan, T. (2003) On the validity of Bergmann's rule. Journal of	612
Biogeography, 30 , 331-351.	613
Meiri, S. & Thomas, G.H. (2007) The geography of body size – challenges of the	614
interspecific approach. Global Ecology and Biogeography, 16, 689-693.	615

Meiri, S., Bauer, A.M., Chirio, L., Colli, G.R., Das, I., Doan, T.M., Feldman, A., Herrera,	616
F.C., Novosolov, M. & Pafilis, P. (2013) Are lizards feeling the heat? A tale of	617
ecology and evolution under two temperatures. Global Ecology and	618
Biogeography, 22 , 834-845.	619
Morales-Castilla, I., Olalla-Tárraga, M.Á., Bini, L.M., De Marco Jr, P., Hawkins, B.A. &	620
Rodríguez, M.Á. (2011) Niche conservatism and species richness patterns of	621
squamate reptiles in eastern and southern Africa. Austral Ecology, 36, 550-	622
558.	623
Mousseau, T.A. (1997) Ectotherms follow the converse to Bergmann's rule.	624
Evolution, 51 , 630-632.	625
Olalla-Tárraga, M.Á. & Rodríguez, M.Á. (2007) Energy and interspecific body size	626
patterns of amphibian faunas in Europe and North America: anurans follow	627
Bergmann's rule, urodeles its converse. Global Ecology and Biogeography, 16,	628
606-617.	629
Olalla-Tárraga, M.Á., Rodríguez, M.Á. & Hawkins, B.A. (2006) Broad-scale patterns of	630
body size in squamate reptiles of Europe and North America. Journal of	631
Biogeography, 33 , 781-793.	632
Olson, V.A., Davies, R.G., Orme, C.D.L., Thomas, G.H., Meiri, S., Blackburn, T.M.,	633
Gaston, K.J., Owens, I.P. & Bennett, P.M. (2009) Global biogeography and	634
ecology of body size in birds. <i>Ecology Letters</i> , 12 , 249-259.	635
Orme, D., Freckleton, R., Thomas, G., Petzoldt, T., Fritz, S., Isaac, N. & Pearse, W.	636
(2012) caper: comparative analyses of phylogenetics and evolution in R. In,	637
http://CRAN.R-project.org/package=caper.	638

Peters, R.H. (1983) The ecological implications of body size. Cambridge University	639
Press, Cambridge, UK.	640
Pincheira-Donoso, D. (2010) The balance between predictions and evidence and the	641
search for universal macroecological patterns: taking Bergmann's rule back to	642
its endothermic origin. Theory in Biosciences, 129 , 247-253.	643
Pincheira-Donoso, D. & Meiri, S. (2013) An intercontinental analysis of climate-driven	644
body size clines in reptiles: no support for patterns, no signals of processes.	645
Evolutionary Biology, 40 , 562-578.	646
Pincheira-Donoso, D., Tregenza, T. & Hodgson, D.J. (2007) Body size evolution in	647
South American Liolaemus lizards of the boulengeri clade: a contrasting	648
reassessment. Journal of Evolutionary Biology, 20, 2067-2071.	649
Pincheira-Donoso, D., Hodgson, D.J. & Tregenza, T. (2008) The evolution of body size	650
under environmental gradients in ectotherms: why should Bergmann's rule	651
apply to lizards? BMC Evolutionary Biology, 8, 68.	652
Powney, G.D., Grenyer, R., Orme, C.D.L., Owens, I.P.F. & Meiri, S. (2010) Hot, dry and	653
different: Australian lizard richness is unlike that of mammals, amphibians	654
and birds. Global Ecology and Biogeography, 19, 386-396.	655
R Core Team (2017) R: A language and environment for statistical computing. R	656
Foundation for Statistical Computing, Vienna, Austria.	657
Rensch, B. (1938) Some problems of geographical variation and species-formation.	658
Proceedings of the Linnean Society of London, 150 , 275-285.	659
Riemer, K., Gurlanick, R.P. & White, E.P. (2018) No general relationship between	660
mass and temperature in endothermic species. eLife, 2018, e27166.	661

Rodrigues, J.F.M., Olalla-Tárraga, M.Á., Iverson, J.B. & Diniz-Filho, J.A.F. (2018)	662
Temperature is the main correlate of the global biogeography of turtle body	663
size. Global Ecology and Biogeography, 27, 429-438.	664
Roll, U., Feldman, A., Novosolov, M., Allison, A., Bauer, A., Bernard, R., Böhm, M.,	665
Chirio, L., Collen, B., Colli, G.R., Dabul, L., Das, I., Doan, T.M., Grismer, L.L.,	666
Herrera, F.C., Hoogmoed, M.S., Itescu, Y., Kraus, F., LeBreton, M., Lewin, A.,	667
Martins, M., Maza, E., Meirte, D., Nagy, Z.T., Nogueira, C., Pauwels, O.S.A.,	668
Pincheira-Donoso, D., Powney, G.D., Sindaco, R., Tallowin, O., Torres-	669
Caravajal, O., Trape, JF., Uetz, P., Vidan, E., Wagner, P., Wang, Y., Orme,	670
C.D.L., Grenyer, R. & Meiri, S. (2017) The global distribution of tetrapods	671
reveals a need for targeted reptile conservation. Nature Ecology & Evolution,	672
1 , 1677-1682.	673
Rosenzweig, M.L. (1968) The strategy of body size in mammalian carnivores.	674
American Midland Naturalist, 80 , 299-315.	675
Scholander, P.F. (1955) Evolution of climatic adaptation in homeotherms. Evolution,	676
9 , 15-26.	677
Siemann, E., Tilman, D. & Haarstad, J. (1996) Insect species diversity, abundance and	678
body size relationships. <i>Nature</i> , 380 , 704-706.	679
Slavenko, A. & Meiri, S. (2015) Mean body sizes of amphibian species are poorly	680
predicted by climate. Journal of Biogeography, 42, 1246-1254.	681
Slavenko, A., Tallowin, O.J.S., Itescu, Y., Raia, P. & Meiri, S. (2016) Late Quaternary	682
reptile extinctions: size matters, insularity dominates. Global Ecology and	683
Biogeography, 25 , 1308-1320.	684

Terribile, L.C., Olalla-Tárraga, M.Á., Diniz-Filho, J.A.F. & Rodríguez, M.Á. (2009)	685
Ecological and evolutionary components of body size: geographic variation of	686
venomous snakes at the global scale. Biological Journal of the Linnean	687
Society, 98 , 94-109.	688
Therneau, T.M. (2018) coxme: Mixed effects cox models. R package version 2.2-7.	689
Available at: https://CRAN.R-project.org/package=coxme.	690
Tonini, J.F.R., Beard, K.H., Ferreira, R.B., Jetz, W. & Pyron, R.A. (2016) Fully-sampled	691
phylogenies of squamates reveal evolutionary patterns in threat status.	692
Biological Conservation, 204 , 23-31.	693
Torres-Romero, E.J., Morales-Castilla, I. & Olalla-Tárraga, M.Á. (2016) Bergmann's	694
rule in the oceans? Temperature strongly correlates with global interspecific	695
patterns of body size in marine mammals. Global Ecology and Biogeography,	696
25 , 1206-1215.	697
Uetz, P., Freed, P. & Hošek, J. (2018) The Reptile Database. Available at:	698
http://www.reptile-database.org (accessed 28 February 2018).	699
Van Voorhies, W.A. (1996) Bergmann size clines: a simple explanation for their	700
occurrence in ectotherms. Evolution, 50, 1259-1264.	701
Vinarski, M.V. (2014) On the applicability of Bergmann's rule to ectotherms: the	702
state of the art. Biology Bulletin Reviews, 4, 232-242.	703
Voituron, Y., Storey, J.M., Grenot, C. & Storey, K.B. (2002) Freezing survival, body ice	704
content and blood composition of the freeze-tolerant European common	705
lizard, Lacerta vivipara. Journal of Comparative Physiology B, 172, 71-76.	706
Wiens, J.A. (1989) Spatial scaling in ecology. Functional Ecology, 3 , 385-397.	707

Woodward, G., Ebenman, B., Emmerson, M., Montoya, J.M., Olesen, J.M., Valido, A.	708
& Warren, P.H. (2005) Body size in ecological networks. <i>Trends in Ecology</i> &	709
Evolution, 20 , 402-409.	710
Yom-Tov, Y. & Geffen, E. (2006) Geographic variation in body size: the effects of	711
ambient temperature and precipitation. Oecologia, 148, 213-218.	712
Zamora-Camacho, F., Reguera, S. & Moreno-Rueda, G. (2014) Bergmann's Rule rules	713
body size in an ectotherm: heat conservation in a lizard along a 2200-metre	714
elevational gradient. Journal of Evolutionary Biology, 27, 2820-2828.	715
	716

DATA ACCESSIBILITY	717
All data used for this study were previously published in other scientific publications	718
and publicly available datasets and are properly cited. The distribution maps from	719
Roll et al. (2017) are currently under embargo, and will be made publicly available	720
during 2018.	721

Table 1. Results of the SAR analyses. A summary of the full model is given for each subset of the data. For each predictor, the standardised 723 regression slope is given. P-values for each predictor are indicated by *, **, ***, and n.s. (<0.05, <0.01, <0.005, and non-significant 724 respectively). Also given are Nagelkerke's Pseudo- R^2 values for each model, although we must stress these cannot be interpreted as 725 percentage of variance explained by the model. 726

Model		Mean Annual	Mean Annual	Temperature	Precipitation	Net Primary	Nagelkerke's
		Temperature	Precipitation	Seasonality	Seasonality	Productivity	Pseudo- <i>R</i> ²
Squamates	Global	0.29***	0.1***	-0.16***	0.01 (n.s.)	0.06***	0.48
	Africa	0.04 (n.s.)	0.22***	-0.13***	0.04 (n.s.)	0.14***	0.3
	Asia	0.44***	-0.13***	-0.64***	-0.22***	-0.14***	0.68
	Australia	-0.29***	0.34***	-0.1*	0.31***	-0.03 (n.s.)	0.64
	Europe	0.72***	0.14***	0.36***	0.03 (n.s.)	-0.08*	0.35
	North America	-0.18***	0.01 (n.s.)	0.36***	0.02 (n.s.)	0.14***	0.18

	South America	0.42***	0.07*	-0.06*	0.21***	0.31***	0.42
Lizards	Global	0.33***	-0.02*	-0.2***	0.06***	0.00 (n.s.)	0.4
	Africa	0.18***	0.25***	-0.18***	0.15***	0.06 (n.s.)	0.35
	Asia	0.26***	-0.07***	-0.54***	-0.08***	-0.27***	0.48
	Australia	-0.38***	0.17***	0.33***	0.45***	0.29***	0.46
	Europe	0.72***	0.04 (n.s.)	0.13*	-0.03 (n.s.)	-0.25***	0.4
	North America	0.54***	-0.23***	-0.12 (n.s.)	-0.35***	0.08 (n.s.)	0.25
	South America	0.36***	0.23***	0.21***	-0.14***	-0.01 (n.s.)	0.29
Snakes	Global	0.0001***	-0.0001***	-0.0005***	-0.0001***	0.00002 (n.s.)	0.21
	Africa	-0.12***	-0.16***	0.25***	-0.36***	-0.09*	0.32
	Asia	0.63***	-0.34***	-0.38***	-0.28***	-0.006***	0.47
	Australia	-0.35***	-0.01 (n.s.)	-0.18***	0.4***	0.34***	0.67
	Europe	-0.28***	0.08*	-0.1 (n.s.)	0.1***	-0.01 (n.s.)	0.11

North America	-0.1 (n.s.)	0.06 (n.s.)	0.38***	0.1***	0.09**	0.21	
South America	0.13***	-0.05 (n.s.)	0.26***	0.14***	0.18***	0.36	
							727

Table 2. Results of the PGLS analyses. A summary of the full model is given for the full dataset, and with the widest-ranging species omitted.728For each predictor, the standardised regression slope is given. P-values for each predictor are indicated by *, **, ***, and n.s. (<0.05, <0.01,</td>729

<0.005, and non-significant respectively).

Model	Mean Annual	Mean Annual	Temperature	Precipitation	Net Primary	λ	R ²
	Temperature	Precipitation	Seasonality	Seasonality	Productivity		
Full	0.02 (n.s.)	0.03*	0.07***	-0.04***	0.03**	0.93	0.01
Widest-ranging species	0.004 (n.s.)	0.06***	0.02 (n.s.)	-0.05***	0.03**	0.92	0.02
omitted							

FIGURES

Figure 1. Maps showing the global distribution of a) median log10 species	733
component of mass (in grams) per cell of all squamates; b) proportion of lizard	734
species out of all squamates per cell; c) median log10 species component of mass (in	735
grams) per cell of lizards; and d) median log10 species component of mass (in grams)	736
per cell in snakes. Species components are the component of mass for each species	737
that cannot be explained by its evolutionary history (residuals from a phylogenetic	738
model of size evolution). Next to each map is a curve showing a generalized additive	739
model of each mapped variable (in black) and the minimum and maximum values of	740
each mapped variable per 96km latitudinal band (in grey).	741

Figure 2. Distribution of median species components of (a) lizards and (b) snakes744per grid cell. Species components are the component of mass for each species that745cannot be explained by its evolutionary history (residuals from a phylogenetic model746of size evolution). Black circles represent observed values; blue lines represent 95%747confidence intervals of 1000 randomized distributions.748

Figure 3. Maps showing cells of a) lizards and b) snakes with median species	751
components exceeding the 95% confidence intervals of 1000 randomized	752
distributions. Species components are the component of mass for each species that	753
cannot be explained by its evolutionary history (residuals from a phylogenetic model	754
of size evolution). Red cells have larger species components than expected by	755
chance, whereas blue cells have smaller species components than expected by	756
chance. c) Overlap between the two maps, black cells are where only lizards or	757
snakes (but not the other group) exceed expected values, light grey cells are where	758
both lizards or snakes exceed expected values (but not in the same direction),	759
whereas blue cells are where both are smaller than expected, and red cells are	760
where both are larger than expected.	761

Figure 4. Scatter plots of 1456 sister-species pairs. Shown are independent763contrasts of log10 mass (in grams) against a) mean annual temperature; b)764temperature seasonality; c) mean annual precipitation; d) precipitation seasonality;765and e) net primary productivity. Only the significant regression through the origin in766d) is represented by a red line. All other regressions are not significant.767