295 research outputs found

    Exposure effects of endotoxin-free titanium-based wear particles to human osteoblasts

    Get PDF
    Titanium-based materials are widely employed by the biomedical industry in orthopedic and dental implants. However, when placed into the human body, these materials are highly susceptible to degradation processes, such as corrosion, wear, and tribocorrosion. As a consequence, metallic ions or particles (debris) may be released, and although several studies have been conducted in recent years to better understand the effects of their exposure to living cells, a consensual opinion has not yet been obtained. In this work, we produced metallic based wear particles by tribological tests carried out on Ti-6Al-4V and Ti-15Zr-15Mo alloys. They were posteriorly physicochemically characterized according to their crystal structure, size, morphology, and chemical composition and compared to Ti-6Al-4V commercially available particles. Finally, adsorbed endotoxins were removed (by applying a specific thermal treatment) and endotoxin-free particles were used in cell experiments to evaluate effects of their exposure to human osteoblasts (MG-63 and HOb), namely cell viability/metabolism, proinflammatory cytokine production (IL-6 and PGE2), and susceptibility to internalization processes. Our results indicate that tribologically-obtained wear particles exhibit fundamental differences in terms of size (smaller) and morphology (irregular shapes and rough surfaces) when compared to the commercial ones. Consequently, both Ti-6Al-4V and Ti-15Zr-15Mo particles were able to induce more pronounced effects on cell viability (decrease) and cytokine production (increase) than did Ti-6Al-4V commercial particles. Furthermore, both types of wear particles penetrated osteoblast membranes and were internalized by the cells. Influences on cytokine production by endotoxins were also demonstrated.This work was supported by Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP (2015/50280-5 and 2017/24300-4), Fundacao para a Ciencia e Tecnologia - FCT (UID/EEA/04436/2013), Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior - CAPES (Finance Code 0001), FCT/CAPES Joint Research Project (99999.008666/2014-08), FCT COMPETE 2020 (POCI-01-0145-FEDER-006941 and POCI-01-0145-FEDER-007265) and M-ERA-NET (0001/2015)

    Observation of the Decay Λ0b→Λ+cτ−¯ν

    Get PDF
    The first observation of the semileptonic b-baryon decay Λb0→Λc+τ-ν¯τ, with a significance of 6.1σ, is reported using a data sample corresponding to 3 fb-1 of integrated luminosity, collected by the LHCb experiment at center-of-mass energies of 7 and 8 TeV at the LHC. The τ- lepton is reconstructed in the hadronic decay to three charged pions. The ratio K=B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+π-π+π-) is measured to be 2.46±0.27±0.40, where the first uncertainty is statistical and the second systematic. The branching fraction B(Λb0→Λc+τ-ν¯τ)=(1.50±0.16±0.25±0.23)% is obtained, where the third uncertainty is from the external branching fraction of the normalization channel Λb0→Λc+π-π+π-. The ratio of semileptonic branching fractions R(Λc+)B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+μ-ν¯μ) is derived to be 0.242±0.026±0.040±0.059, where the external branching fraction uncertainty from the channel Λb0→Λc+μ-ν¯μ contributes to the last term. This result is in agreement with the standard model prediction

    Measurement of the photon polarization in ΛbΛγ\Lambda_b \to \Lambda \gamma decays

    Get PDF
    The photon polarization in bsγb \to s \gamma transitions is measured for the first time in radiative b-baryon decays exploiting the unique spin structure of ΛbΛγ\Lambda_b \to \Lambda \gamma decays. A data sample corresponding to an integrated luminosity of 6  fb16\;fb^{-1} collected by the LHCb experiment in pppp collisions at a center-of-mass energy of 13  TeV13\;TeV is used. The photon polarization is measured to be αγ=0.820.260.13+0.17+0.04\alpha_{\gamma}= 0.82^{\,+\,0.17\,+\,0.04}_{\,-\,0.26\,-\,0.13}, where the first uncertainty is statistical and the second systematic. This result is in agreement with the Standard Model prediction and previous measurements in b-meson decays. Charge-parity breaking effects are studied for the first time in this observable and found to be consistent with CPCP symmetry.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-030.html (LHCb public pages

    Angular analysis of D0π+πμ+μD^0 \to \pi^+\pi^-\mu^+\mu^- and D0K+Kμ+μD^0 \to K^+K^-\mu^+\mu^- decays and search for CPCP violation

    Get PDF
    The first full angular analysis and an updated measurement of the decay-rate CPCP asymmetry of the D0π+πμ+μD^0 \to \pi^+\pi^-\mu^+\mu^- and D0K+Kμ+μD^0 \to K^+K^-\mu^+\mu^- decays are reported. The analysis uses proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7, 8 and 13 TeV. The data set corresponds to an integrated luminosity of 9 fb1^{-1}. The full set of CPCP-averaged angular observables and their CPCP asymmetries are measured as a function of the dimuon invariant mass. The results are consistent with expectations from the standard model and with CPCP symmetry.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-035.html (LHCb public pages
    corecore