74 research outputs found

    The effects of space and diversity of interaction types on the stability of complex ecological networks

    Get PDF
    The relationship between structure and stability in ecological networks and the effect of spatial dynamics on natural communities have both been major foci of ecological research for decades. Network research has traditionally focused on a single interaction type at a time (e.g. food webs, mutualistic networks). Networks comprising different types of interactions have recently started to be empirically characterized. Patterns observed in these networks and their implications for stability demand for further theoretical investigations. Here, we employed a spatially explicit model to disentangle the effects of mutualism/antagonism ratios in food web dynamics and stability. We found that increasing levels of plant-animal mutualistic interactions generally resulted in more stable communities. More importantly, increasing the proportion of mutualistic vs. antagonistic interactions at the base of the food web affects different aspects of ecological stability in different directions, although never negatively. Stability is either not influenced by increasing mutualism—for the cases of population stability and species’ spatial distributions—or is positively influenced by it—for spatial aggregation of species. Additionally, we observe that the relative increase of mutualistic relationships decreases the strength of biotic interactions in general within the ecological network. Our work highlights the importance of considering several dimensions of stability simultaneously to understand the dynamics of communities comprising multiple interaction typesMiguel Lurgi, Daniel Montoya, JosĂ© M. Montoy

    Testing angular velocity as a new metric for metabolic demands of slow-moving marine fauna: a case study with Giant spider conchs Lambis truncata

    Get PDF
    BackgroundQuantifying metabolic rate in free-living animals is invaluable in understanding the costs of behaviour and movement for individuals and communities. Dynamic body acceleration (DBA) metrics, such as vectoral DBA (VeDBA), are commonly used as proxies for the energy expenditure of movement but are of limited applicability for slow-moving species. It has recently been suggested that metrics based on angular velocity might be better suited to characterise their energetics. We investigated whether a novel metric—the ‘Rate of change of Rotational Movement (RocRM)’, calculated from the vectoral sum of change in the pitch, roll and yaw/heading axes over a given length of time, is a suitable proxy for energy expenditure.ResultsWe found that RocRM can be used as an alternative energy expenditure proxy in a slow-moving benthic invertebrate. Eleven Giant spider conchs Lambis truncata (collected in the Red Sea) were instrumented with multiple channel (Daily Diary) tags and kept in sealed chambers for 5 h while their oxygen consumption, V̇O2, was measured. We found RocRM to be positively correlated with V̇O2, this relationship being affected by the time-step (i.e. the range of the calculated differential) of the RocRM. Time steps of 1, 5, 10 and 60 s yielded an explained variability of between 15 and 31%. The relationship between V̇O2 and VeDBA was not statistically significant, suggesting RocRM to provide more accurate estimations of metabolic rates in L. truncata.ConclusionsRocRM proved to be a statistically significant predictor of V̇O2 where VeDBA did not, validating the approach of using angular-based metrics over dynamic movement-based ones for slower moving animals. Further work is required to validate the use of RocRM for other species, particularly in animals with minimally dynamic movement, to better understand energetic costs of whole ecosystems. Unexplained variability in the models might be a consequence of the methodology used, but also likely a result of conch activity that does not manifest in movement of the shell. Additionally, density plots of mean RocRM at each time-step suggest differences in movement scales, which may collectively be useful as a species fingerprint of movement going forward

    Mercury from chlor-alkali plants: measured concentrations in food product sugar

    Get PDF
    Mercury cell chlor-alkali products are used to produce thousands of other products including food ingredients such as citric acid, sodium benzoate, and high fructose corn syrup. High fructose corn syrup is used in food products to enhance shelf life. A pilot study was conducted to determine if high fructose corn syrup contains mercury, a toxic metal historically used as an anti-microbial. High fructose corn syrup samples were collected from three different manufacturers and analyzed for total mercury. The samples were found to contain levels of mercury ranging from below a detection limit of 0.005 to 0.570 micrograms mercury per gram of high fructose corn syrup. Average daily consumption of high fructose corn syrup is about 50 grams per person in the United States. With respect to total mercury exposure, it may be necessary to account for this source of mercury in the diet of children and sensitive populations

    Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: The importance of multispecies interactions

    Get PDF
    International audienceAbundant and widely distributed invasive prey can negatively affect co‐occurring native species by competing for food and/or shelter, removing vegetation cover and reducing habitat complexity (changing predation risk), and by sustaining elevated abundances of invasive mesopredators. However, information regarding the community and trophic consequences of controlling invasive prey and their temporal dynamics remain poorly understood. We used multispecies ecological network models to simulate the consequences of changing European rabbit Oryctolagus cuniculus abundance in an arid mammalian community. We quantified how changes in the dominant prey (rabbits) affected multiple trophic levels, examining changes in predator–prey interactions through time and how they affected native prey persistence. Our results suggest that removal of rabbits can benefit native biodiversity immediately at removal rates between 30% and 40%. However, beyond these levels, densities of small native mammals will decline in the short term. The processes underpinning these declines are: (a) increased competition for resources (vegetation) with kangaroos Macropus spp., whose numbers increase due to their release from competition with rabbits and (b) increased predation (prey switching) by feral cats Felis catus. Both effects are mediated by dingoes Canis dingo, a native apex predator. Importantly, native mammal abundance recovers after a time delay, which is prolonged when high rates of rabbit control are applied. This is likely due to a reduction in hyperpredation by invasive feral cats and red foxes Vulpes vulpes following rabbit removal. Continued eradication of rabbits in arid Australia will benefit native species due to a decrease in apparent competition for resources and by alleviating hyperpredation from invasive mesopredators. Furthermore, ecosystem‐level conservation benefits of reducing invasive prey abundance are as important as direct control of invasive mesopredators. Synthesis and applications. Multispecies ecological network models provide wildlife managers with tools to better understand and predict the complex effects of species removal and control on both intact and modified ecosystems. Our results show that management of the Australian arid zone can benefit from controlling invasive prey as well as invasive predators. However, invasive species control can cause unexpected outcomes on native biodiversity. This extends to other systems where dominant prey may play fundamental roles in ecosystem structure and function

    Viral ecogenomics across the Porifera

    Get PDF
    BackgroundViruses directly affect the most important biological processes in the ocean via their regulation of prokaryotic and eukaryotic populations. Marine sponges form stable symbiotic partnerships with a wide diversity of microorganisms and this high symbiont complexity makes them an ideal model for studying viral ecology. Here, we used morphological and molecular approaches to illuminate the diversity and function of viruses inhabiting nine sponge species from the Great Barrier Reef and seven from the Red Sea.ResultsViromic sequencing revealed host-specific and site-specific patterns in the viral assemblages, with all sponge species dominated by the bacteriophage order Caudovirales but also containing variable representation from the nucleocytoplasmic large DNA virus families Mimiviridae, Marseilleviridae, Phycodnaviridae, Ascoviridae, Iridoviridae, Asfarviridae and Poxviridae. Whilst core viral functions related to replication, infection and structure were largely consistent across the sponge viromes, functional profiles varied significantly between species and sites largely due to differential representation of putative auxiliary metabolic genes (AMGs) and accessory genes, including those associated with herbicide resistance, heavy metal resistance and nylon degradation. Furthermore, putative AMGs varied with the composition and abundance of the sponge-associated microbiome. For instance, genes associated with antimicrobial activity were enriched in low microbial abundance sponges, genes associated with nitrogen metabolism were enriched in high microbial abundance sponges and genes related to cellulose biosynthesis were enriched in species that host photosynthetic symbionts.ConclusionsOur results highlight the diverse functional roles that viruses can play in marine sponges and are consistent with our current understanding of sponge ecology. Differential representation of putative viral AMGs and accessory genes across sponge species illustrate the diverse suite of beneficial roles viruses can play in the functional ecology of these complex reef holobionts

    Reduced body sizes in climate-impacted tropical insect assemblages are primarily explained by range shifts

    Get PDF
    Both community composition changes due to species redistribution and within-species size shifts may alter body size structures under climate warming. Here we assess the relative contribution of these processes in community-level body size changes in tropical moth assemblages that moved uphill during a period of warming. Based on resurvey data for seven assemblages (>8000 individuals) on Mt. Kinabalu, Borneo in 1965 and 2007, we show significant wing-length reduction (mean shrinkage of 1.3% per species). Range shifts explain most size re-structuring, due to uphill shifts of relatively small species, especially at high elevations. Overall, mean forewing length shrank by ca. 5%, much of which accounted for by species range boundary shifts (3.9%), followed by within-boundary distribution changes (0.5%), and within-species size shrinkage (0.6%). We conclude that the effects of range shifting predominate, but considering species physiological responses is also important for understanding community size reorganization under climate warming

    A Landscape Approach to Invasive Species Management

    Get PDF
    Biological invasions are not only a major threat to biodiversity, they also have major impacts on local economies and agricultural production systems. Once established, the connection of local populations into metapopulation networks facilitates dispersal at landscape scales, generating spatial dynamics that can impact the outcome of pest-management actions. Much planning goes into landscape-scale invasive species management. However, effective management requires knowledge on the interplay between metapopulation network topology and management actions. We address this knowledge gap using simulation models to explore the effectiveness of two common management strategies, applied across different extents and according to different rules for selecting target localities in metapopulations with different network topologies. These management actions are: (i) general population reduction, and (ii) reduction of an obligate resource. The reduction of an obligate resource was generally more efficient than population reduction for depleting populations at landscape scales. However, the way in which local populations are selected for management is important when the topology of the metapopulation is heterogeneous in terms of the distribution of connections among local populations. We tested these broad findings using real-world scenarios of European rabbits (Oryctolagus cuniculus) infesting agricultural landscapes in Western Australia. Although management strategies targeting central populations were more effective in simulated heterogeneous metapopulation structures, no difference was observed in real-world metapopulation structures that are highly homogeneous. In large metapopulations with high proximity and connectivity of neighbouring populations, different spatial management strategies yield similar outcomes. Directly considering spatial attributes in pest-management actions will be most important for metapopulation networks with heterogeneously distributed links. Our modelling framework provides a simple approach for identifying the best possible management strategy for invasive species based on metapopulation structure and control capacity. This information can be used by managers trying to devise efficient landscape-oriented management strategies for invasive species and can also generate insights for conservation purposes.Miguel Lurgi, Konstans Wells, Malcolm Kennedy, Susan Campbell, Damien A. Fordha

    Ecological network complexity scales with area

    Get PDF
    Larger geographical areas contain more species—an observation raised to a law in ecology. Less explored is whether biodiversity changes are accompanied by a modification of interaction networks. We use data from 32 spatial interaction networks from different ecosystems to analyse how network structure changes with area. We find that basic community structure descriptors (number of species, links and links per species) increase with area following a power law. Yet, the distribution of links per species varies little with area, indicating that the fundamental organization of interactions within networks is conserved. Our null model analyses suggest that the spatial scaling of network structure is determined by factors beyond species richness and the number of links. We demonstrate that biodiversity–area relationships can be extended from species counts to higher levels of network complexity. Therefore, the consequences of anthropogenic habitat destruction may extend from species loss to wider simplification of natural communities.This work was supported by the TULIP Laboratory of Excellence (ANR-10-LABX-41 and 394 ANR-11-IDEX-002-02) to J.M.M., by a Region Midi-Pyrenees project (CNRS 121090) to J.M.M., and by the FRAGCLIM Consolidator Grant (726176) to J.M.M. from the European Research Council under the European Union’s Horizon 2020 Research and Innovation Program. The study was also supported by Spanish MICINN projects CGL2009-12646, CSD2008-0040 and CGL2013-41856 to J.B. and A.R. C.E. was funded through the São Paulo Research Foundation (FAPESP 2015/15172-7). V.A.G.B. was funded by National Funds through FCT—Foundation for Science and Technology under the Project UIDB/05183/2020. W.T. received funding from the ERA-Net BiodivERsA—Belmont Forum, with the national funder Agence National pour la Recherche (FutureWeb: ANR-18-EBI4–0009 and BearConnect: ANR-16-EBI3-0003).Peer reviewe
    • 

    corecore