

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in: *Journal of Applied Ecology*

Cronfa URL for this paper: http://cronfa.swan.ac.uk/Record/cronfa49039

Paper:

Lurgi, M., Ritchie, E. & Fordham, D. (2018). Eradicating abundant invasive prey could cause unexpected and varied biodiversity outcomes: The importance of multispecies interactions. *Journal of Applied Ecology, 55*(5), 2396-2407. http://dx.doi.org/10.1111/1365-2664.13188

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior permission for personal research or study, educational or non-commercial purposes only. The copyright for any work remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

1	Title: Eradicating abundant invasive prey could cause unexpected and varied biodiversity
2	outcomes: the importance of multi-species interactions
3	
4	Authors: Miguel Lurgi ^{1,2} , Euan G. Ritchie ³ , Damien A. Fordham ^{1,4}
5	
6	¹ The Environment Institute and School of Biological Sciences, University of Adelaide, South
7	Australia 5005, Australia.
8	² Ecological Networks and Global Change Group, Theoretical and Experimental Ecology
9	Station, CNRS and Paul Sabatier University, Moulis, France.
10	³ Deakin University, Geelong, Australia. School of Life and Environmental Sciences, Centre
11	for Integrative Ecology, Melbourne Burwood Campus, 221 Burwood Highway, Burwood,
12	Victoria 3125.
13	⁴ Center for Macroecology, Evolution, and Climate, National Museum of Denmark, University
14	of Copenhagen, Copenhagen, Denmark.
15	Email addresses: ML: miguel.lurgi@sete.cnrs.fr, ER: e.ritchie@deakin.edu.au, DAF:
16	damien.fordham@adelaide.edu.au
17	Corresponding author: Miguel Lurgi. Address: CNRS. 2 route du CNRS. 09200 Moulis,
18	France.
19	<i>Email</i> : <u>miguel.lurgi@sete.cnrs.fr</u> <i>Phone</i> : +33 (0) 5 61 04 03 60
20	Running title: Cascading effects of prey eradication
21	Word count: Summary 350; Main text 5,027; Authors' contributions 34; Acknowledgements
22	39; References 1,584; Table and Figure legends 766.
23	Number of Tables: 1
24	Number of Figures: 6
25	Number of References: 57

- 26 Abstract
- Abundant and widely-distributed invasive prey can negatively affect co-occurring
 native species by competing for food and/or shelter, removing vegetation cover and
 reducing habitat complexity (changing predation risk), and by sustaining elevated
 abundances of invasive mesopredators. However, information regarding the
 community and trophic consequences of controlling invasive prey, and their temporal
 dynamics, remain poorly understood.
- We used multi-species ecological network models to simulate the consequences of
 changing European rabbit *Oryctolagus cuniculus* abundance in an arid mammalian
 community. We quantified how changes in the dominant prey (rabbits) affected
 multiple trophic levels, examining changes in predator-prey interactions through time
 and how they affected native prey persistence.
- 38 3. Our results suggest that removal of rabbits can benefit native biodiversity 39 immediately at removal rates between 30 and 40%. However, beyond these levels, 40 densities of small native mammals will decline in the short term. The processes 41 underpinning these declines are: (i) increased competition for resources (vegetation) 42 with kangaroos Macropus spp., whose numbers increase due to their release from competition with rabbits; and (ii) increased predation (prey switching) by feral cats 43 44 Felis catus. Both of these effects are mediated by dingoes Canis dingo, a native apex 45 predator.
- 46
 4. Importantly, native mammal abundance recovers after a time delay, which is
 47
 47
 48
 48
 48
 48
 49
 49
 49
 49
 40
 40
 41
 42
 43
 44
 44
 44
 45
 46
 47
 47
 48
 48
 49
 49
 49
 40
 40
 41
 41
 42
 43
 44
 44
 45
 46
 47
 47
 48
 49
 49
 49
 40
 40
 41
 41
 42
 43
 44
 44
 44
 44
 44
 45
 46
 47
 47
 47
 48
 49
 49
 49
 40
 40
 41
 41
 42
 43
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 45
 46
 47
 47
 47
 48
 49
 49
 49
 49
 49
 40
 40
 41
 41
 42
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44
 44</li

50 5. Continued eradication of rabbits in arid Australia will benefit native species due to a
51 decrease in apparent competition for resources and by alleviating hyper-predation
52 from invasive mesopredators. Furthermore, ecosystem-level conservation benefits of
53 reducing invasive prey abundance are as important as direct control of invasive
54 mesopredators.

55

Synthesis and applications. Multi-species ecological network models provide wildlife
managers with tools to better understand and predict the complex effects of species removal
and control on both intact and modified ecosystems. Our results show that management of the
Australian arid zone can benefit from controlling invasive prey as well as invasive predators.
However, invasive species control can cause unexpected outcomes on native biodiversity.
This extends to other systems where dominant prey may play fundamental roles in ecosystem
structure and function.

Keywords: biological invasions; ecological networks; community dynamics; hyperpredation; prey switching; species removal; apex predator; trophic cascade

66

67 Introduction

Biological invasions constitute one of the greatest threats to biodiversity, detrimentally
affecting native species, ecological communities and ecosystem processes (Bellard, Cassey &
Blackburn 2016). Invaders can adversely affect native populations directly through
competition, predation, hybridization and disease, and indirectly by disrupting habitat
suitability (Doherty *et al.* 2016). Therefore, reducing the ecological impacts of invasive
species is a primary goal of conservation management (Jones *et al.* 2016).

Biotic interactions between invaders and native species are of particular importance for conservation outcomes, yet rarely is the ecological complexity of managing invasive species sufficiently considered (Courchamp, Chapuis & Pascal 2003). Consequently, the outcomes of pest management on native species remains poorly understood (Bull & Courchamp 2009), despite potentially far reaching effects for ecological communities (Ballari, Kuebbing & Nuñez 2016).

80 There is increasing recognition that multi-species, community-level approaches are 81 needed to manage invasive species (Bode, Baker & Plein 2015; Baker, Gordon & Bode 82 2016). This is because the reduction or eradication of populations of invasive species can 83 often lead to unexpected flow-on consequences for community structure and ecosystem 84 processes, if species interactions aren't understood and accounted for by managers (Ballari, 85 Kuebbing & Nuñez 2016). Perturbing ecosystems through invasive species control can lead 86 to a variety of outcomes, and might result in temporary and/or long-term changes to 87 ecosystem states. Local populations of native species can recover rapidly if the invasive 88 species causing the largest threat to population persistence is correctly identified and 89 controlled sufficiently. However, if control efforts are insufficient to effectively depress the 90 abundance of the invasive species then populations of native species and degraded 91 ecosystems may not recover or they may revert to their former (eroded) states quickly.

92 During such phases of non-equilibrium dynamics, it is plausible that further damage may 93 compound impacts on native biodiversity and ecosystems (Courchamp, Chapuis & Pascal 94 2003; Ballari, Kuebbing & Nuñez 2016). Effective control (severe population reduction or 95 eradication) of invasive species can also restructure food webs leading to the loss (or near 96 loss) of endemic species through prey switching (Norbury 2001; Gibson 2006) and 97 unforeseen negative effects of hyper-predation (an additional predation pressure that arises 98 when the abundance of a predator is enhanced by the presence of another species of prey) on 99 the abundance of native biodiversity (Courchamp, Langlais & Sugihara 2000).

100 Although models of complex food web structures, describing interactions between 101 species in ecosystems, have been used for over four decades to advance ecological theory and 102 better understand complex community structures and dynamics (e.g. May 1973; Pimm 1984), 103 they are now being used to guide conservation management (McDonald-Madden et al. 2016) 104 and test alternative pest management actions (Bode, Baker & Plein 2015). Ecological 105 network models are being used with increasing frequency in conservation and invasion 106 biology for the reason that they provide suitable frameworks to test for unexpected and 107 potentially undesirable consequences of eradicating species or groups of species from natural 108 systems. This is because they incorporate the potential indirect effects that species might have 109 on one another i.e., the effect of a species on another being mediated by a third (other) 110 species. Indirect effects in networks of ecological interactions, via top-down and bottom-up 111 mechanisms, are powerful regulators of community dynamics (Menge 1995). 112 Mainland Australia and its mammal communities provide ideal and tractable systems

for examining the potential consequences of perturbing ecological networks, consisting of both invasive and native predators and prey. Across much of Australia's arid biome (~70% of Australia or 7.5 million km²), key species in the ecological network include invasive mesopredators (feral cats, *Felis catus*, and red foxes, *Vulpes vulpes*) and invasive small 117 mammals (European rabbits, Oryctolagus cuniculus), native large herbivores (kangaroos, 118 *Macropus* and *Osphranter* spp.), a native apex predator (dingoes, *Canis dingo*) and typically 119 more restricted and threatened small native mammals (e.g. bilbies, *Macrotis lagotis*) 120 (Wallach et al. 2016). In this ecosystem, rabbits are a 'dominant prey' and integral to the 121 functioning of the ecological network. Rabbits (i) compete directly with small sized native 122 mammals and native herbivores for food and/or shelter; (ii) remove vegetation, reduce habitat 123 complexity and change predation risk for native prey species; and (iii) sustain and potentially 124 increase invasive mesopredator abundance (Johnson 2006).

125 Species interactions have been considered to some extent in mathematical models 126 applied to aspects of this Australian ecosystem. These studies have shown the importance of 127 considering ecological interactions when identifying "whole ecosystem" type responses to 128 species management. For example, Pech & Hood (1998) disentangled the likely effects of a 129 downward pressure on rabbit abundance (caused by rabbit hemorrhagic disease, an important 130 biocontrol for European rabbits in their invasive range (Fordham et al. 2012)) on a 131 mesopredator and a generic small native mammal. Choquenot & Forsyth (2013) used a 132 similar approach to establish the likely effects of controlling dingoes on kangaroo 133 populations, showing the potential for cascading effects of controlling an apex predator. More 134 recently, an extension of this model allowed Prowse et al. (2015) to better understand the 135 economic benefits of maintaining populations of dingoes for the cattle industry. Here, we 136 extend these empirically-based approaches, increasing the complexity (and likely ecological 137 reality) of the ecological network, to provide an improved understanding of the community-138 wide consequences of managing rabbits in arid Australia. Although community-based models 139 have previously been used to understand the effects of removing species from ecosystems 140 similar to the one studied here, these studies have mainly focused on removing top predators, 141 modelling the consequences of removing top-down effects on ecosystem processes (e.g.,

142 Colman *et al.* 2014; Dexter *et al.* 2013).

143 Previous studies suggest that successful rabbit control could have wide reaching effects on native biodiversity in Australia (Pedler et al. 2016), in addition to economic benefits 144 145 (Cooke, Jones & Wong 2010). However, to date, research has not considered the outcomes of 146 rabbit management at the ecosystem level. Based on previous work and expert knowledge, 147 we establish the possible flow-on effects of rabbit removal on the abundances of other key 148 species in a model Australian arid ecosystem (Fig. 1). We then develop and use an explicit 149 multi-species ecological network model to test these hypotheses. More specifically we: (i) 150 describe and quantify how changes in rabbit abundances are likely to affect multiple trophic 151 levels (mesopredator, apex predator, native prey, and large herbivore abundance); and (ii) 152 examine the temporal dimension (dynamic nature) of changes in predator-prey interactions 153 (including potential prey switching and hyper-predation) and how these might affect the 154 persistence of native prey.

Our results and simulation-based tool provide wildlife and pest managers with a better understanding of how ecological communities might respond to targeted rabbit management. The approach can be extended to other systems in order to examine predator-prey interactions and make *a priori* predictions about the ecological consequences of management interventions, including pest control and species reintroductions.

160

161 Materials and Methods

We developed a model based on discrete-time difference equations and simulated the
dynamics of trophic interactions in an arid ecosystem in Australia, consisting of 6 different
species plus a basal (vegetation) resource (Fig. 2). The species modelled in this simplified,
but ecologically realistic, food web were: European rabbits (*Oryctolagus cuniculus*); bilby
(*Macrotis lagotis*; a native critical weight range 'small' mammal); kangaroos (*Macropus* and

167 Osphranter spp.); European fox (Vulpes vulpes); feral cat (Felis catus); and dingo (Canis
168 dingo). We used this dynamic food web model to establish whether decreasing the abundance
169 of rabbits is likely to reduce mesopredator populations and predation to levels that would
170 support recovery of native mammals.

171 We did not try and capture every species in the ecological network in the model 172 because doing so would make the model computationally unwieldy, providing results that 173 would be difficult to duplicate and interpret (Drossel & McKane 2002). Instead, using 174 published research and expert knowledge, we endeavoured to capture the primary species 175 interactions and ecological consequences that are likely to be affected by rabbit management. We were unable to account for potential prey switching by cats and foxes from rabbits to 176 177 reptiles and invertebrates, due to a lack of empirical data. Likewise, the diet of dingoes is 178 known to be broad, varying in different ecosystems, sometimes including mammalian prey in 179 the critical weight range of 35 to 5500 g. However, on average, dingoes typically consume 180 orders of magnitudes fewer critical weight range mammals than do invasive mesopredators 181 (e.g., Davis *et al.* 2015). Thus, to simulate the main interactions and community structure in 182 the arid Australian ecosystem, the potential (but negligible) trophic interaction between the 183 dingo and small native mammal prey was not incorporated into the model, preventing any 184 potential prey-switching to small native mammals by dingoes. In favour of simplicity (e.g., 185 Robley et al. 2004), and a lack of empirical data suggesting otherwise, we assumed that the 186 three herbivore species in the network are competing for the same resource without resource 187 partitioning. Furthermore, we assumed that mesopredators rely solely on rabbits and small 188 mammals for food, however, there might be other prey items that could maintain their 189 abundances.

190

191 *Food web structure*

192 The structure of the food web (Fig. 2) established the paths for biomass flux among species, 193 except for the dingo-cat and dingo-fox interactions, which did not involve biomass transfer. 194 These two interactions were treated as ammensalisms, whereby the mesopredator (fox/cat) is 195 negatively affected by the dingo, but the dingo does not receive a direct benefit (Abrams 196 1987). Ammensalism in the model, therefore, represents intraguild competition between 197 mesopredators, a community motif rarely considered in food web studies (Amarasekare 198 2008). By simulating a mixture of antagonistic and ammensal interactions, our model 199 addresses an important and novel aspect of research on food webs - the incorporation of 200 multiple interaction types in dynamical ecological networks studies (Mougi 2016).

201

202 Model simulations

203 Our food web model extended the discrete-time difference equations of Pech & Hood (1998), 204 Robley et al. (2004), Pople et al. (2010), and Chequenot & Forsyth (2013) to consider a larger 205 number of species and interactions (Table 1 and Appendix S1). Model validation was done 206 by comparing the outcomes of the population dynamics of the species in the community with 207 the results published for the different parts of the model in isolation (Pech & Hood 1998; 208 Choquenot & Forsyth 2013). Since information on the population dynamics of cats was not 209 available (Robley et al. 2004), their dynamics were considered to be similar to that of the fox. 210 To simulate the community-wide effects of rabbit removal, rabbit abundance was reduced 211 across a range of removal fractions (i.e., the fraction of the population of rabbits that was 212 removed from the community), which spanned from 0.1 to 0.9 at an interval of 0.1. We did 213 not simulate complete rabbit removal as it is a very unlikely scenario in the study system. 214 Initial abundances for all species were sampled using Latin hypercube sampling, 215 implemented using the *lhs* package in R (R Development Core Team 2013). This approach 216 generates a stratified random subset of parameter input values for simulation, by assigning a

plausible range for each variable and sampling all portions of its distribution (Norton 2015). We generated 5,000 independent initial abundance configurations, which we used as independent initial states for model simulations. Ranges for initial abundances used in the hypercube sampling were based on minimum and maximum abundances observed in the wild for a spatial extent equivalent to the home range of a pack of dingoes, which is ~80 km² = 8000 ha (see Appendix S2 for further details). Thus, the spatial scale of this model was ~80 km².

224 Simulations were run for 250 years (1000 time steps). Initial transient dynamics were 225 allowed to occur for a period of 150 years (600 time steps), closely resembling the amount of 226 time rabbits have been in Australia prior to the deliberate introduction of myxoma virus in the 227 1950's as a biocontrol measure, which negatively perturbed rabbit numbers (Cooke et al. 228 2013). During the following 50 years (200 time steps) a perturbation was applied to the 229 system by consistently removing (i.e. during each time step) a fraction of the rabbit 230 population according to the different levels of removal/perturbation specified above ([0.1, 231 0.2, 0.3, ..., 0.9]). For the last 50 years (last 200 time steps) of each simulation we ceased 232 rabbit control, and populations were allowed to recover from the perturbation. This simulates 233 a press perturbation that lasts for a relatively long time, after which the system is allowed to 234 recover (Schmitz 1997), allowing the ecosystem-level benefits of rabbit management to be 235 directly explored. This experimental design was replicated 5,000 times (each time using one 236 of the 5,000 initial states of abundance) for the 9 different values of rabbit control, yielding a 237 total of 45,000 simulations. Initial conditions for abundance (sampled from the latin 238 hypercube) were the same across the 9 values of rabbit control but varied across the 5,000 239 replicates for each treatment. The food web model was developed in R (R Development Core 240 Team 2013) programming language (see Appendix S3). Model parameter values, including 241 their sources, are provided in Table S1.

242 To look at the long-term effects of rabbit removal on our modelled Australian arid 243 ecological community we: (i) calculated the median abundance of each species during the last 244 10 years of rabbit control; and (ii) the average abundances of species post-rabbit control using 245 a 5-year sliding window. We did not use a 10-year sliding window because it would exclude 246 the first and last ten years of post-control data. We quantified the realised strength of each 247 interaction in the food web during each of the three periods (50 years prior to control, during 248 control, after control) in order to determine the mechanisms underpinning the responses of 249 the community to rabbit removal. Interaction strengths were quantified for model iterations 250 by calculating their median values across each time period. We used these estimates as a 251 measure of the effect of each species on each of its resource items in the food web. 252 Interaction strength can be quantified in two ways in our model: (i) as the per capita predation 253 rate of a predator on its prey, and (ii) as the total amount of biomass going from one species 254 (node in the network) to another. The first measure provides information on the strength of 255 the effect of an individual predator on its prey population, while the second measure provides 256 an estimate of the quantity of resource intake by the whole predator population. Thus, the 257 model outputs quantify interaction strengths between animal species as the total per capita 258 predation rate (Table 1); and between herbivores and pasture as the functional response of 259 herbivores (Table 1) i.e., the total amount of pasture biomass for a given herbivore species. 260

261 Statistical analyses

We used polynomial regression to determine changes in median abundances of the species in the food web to rabbit control. To quantify the changes in the interaction strengths between species in response to rabbit control, we divided the rabbit control treatments into three categories: (i) 10-40%, (ii) >40-70%, and (iii) >70% of rabbit removal. We then analysed differences in the ranges of interaction strengths across these three levels of rabbit control. 267 We used a global sensitivity analysis to identify which parameters had the strongest 268 influence on the median abundance of small native mammals (Wells et al. 2016). We 269 established plausible ranges for each parameter in Table S1 (+/- 10% of the estimated value) 270 and used Latin hypercube sampling in R (lhs package) to generate 10,000 evenly distributed 271 samples across the parameter space. Because little is known about the interaction strengths 272 between the apex predator and the mesopredators, we used wider uncertainty bounds (+/-273 50% of the estimated value) for the relevant parameters concerning these interactions in the 274 sensitivity analysis (i.e., $k_{D,F}$ and $k_{D,C}$ in Table S1). We recorded the median abundance of the 275 small native mammal species over a 20-year period (without rabbit control), following a 276 burn-in period. We used boosted regression trees to estimate the relative importance of key 277 parameters on the median abundance of the small native mammal species (learning rate = 278 0.0001, tree complexity = 5, bag fraction = 0.5, and k-fold cross-validation procedure), using 279 the *gbm.step* function from the *dismo* package in R.

280

281 Results

The removal of rabbits was most beneficial for bilby, and by extension other small mammals, during the rabbit control period when the fraction of rabbits removed from the population was between 30 and 40% (Fig. 3). Much larger fractions of rabbit control (i.e., >70% of eradication), caused the abundances of small mammals to be lower in comparison with those of low to intermediate levels of rabbit control. Conversely, mesopredator abundance declined in response to all fractions of rabbit population reduction (Fig. 3).

The two main interacting processes behind the decrease in small mammal abundance were: (i) increased apparent competition for resources (vegetation) with kangaroos (as evident by a marked increase in kangaroo abundance across fractions of rabbit control; Fig. S1), and (ii) increased per capita predation by cats (Fig. 4). The response was particularly strong for increased apparent competition, however, increased predation by cats (i.e. topdown control) had an important influence when rabbit removal was ≥ 40% (Fig. 4b).
Predation by foxes on small native mammals was not affected by rabbit removal (Fig. 4c).
The different functional responses of fox and cats on rabbits are likely behind these
differential changes in predation on small native mammals by mesopredators.

297 The removal of rabbits was beneficial for dingoes. A steep increase in dingo median 298 abundance was observed for rabbit removal fractions between 10% and 50%, after which it 299 began to plateau (Fig. 5). Dingo abundance was primarily driven by the availability of its 300 main prey, kangaroos. The fraction of kangaroos eaten per day (top right panel in Fig. 5) 301 increased with small-intermediate fractions of rabbit removal. An increase in kangaroo 302 intake was accompanied by less frequent large rabbit intake rates (bottom right panel in Fig. 303 5). Increases in dingo abundance were, in turn, followed by decreases in mesopredator 304 abundances (which are killed by dingoes). Fig. 3 shows that fox and cat abundances 305 decreased as the fraction of rabbits removed increased.

306 When rabbit removal ceased, the abundance of small native mammals went through 307 three distinct temporal phases of change: abundance initially declined, then increased 308 steeply, then resumed its decline (Fig. 6). The magnitude of these changes differed across 309 fractions of rabbit control, with larger fractions of rabbit removal (0.7 and 0.9), being the 310 most beneficial for small mammal abundance in the medium to long term if rabbit control 311 were to end suddenly. Interestingly, 40 years after rabbit removal ended, small mammal 312 numbers dropped below abundance levels when rabbit removal ceased, suggesting that the 313 renewed availability of staple prey (rabbits) for mesopredators (Fig. S2) has the potential to 314 have a long-standing negative impact on small mammal populations (Fig. 6). Top-down and 315 bottom-up effects were both important in regulating small mammal abundance post rabbit 316 removal. Vegetation biomass removed by kangaroos was highest for high fractions of rabbit removal (Fig. 6, top-right panel), suggesting that resource competition between kangaroos
and small mammals intensifies with increased numbers of rabbits removed (since both use
vegetation as their primary resource). Conversely, predation by cats on small mammals
remained the same for small to large fractions of rabbit removal (Fig. 6, bottom-right panel).
Our simulation results (assessed through the median abundance of small native
mammals) were most sensitive to the estimate of growth rate for small (generic) native
mammals, followed by growth rate estimates for foxes and rabbits (Fig. S3).

324

325 Discussion

326 Invasive species threaten biodiversity worldwide. Understanding the ecological role of 327 invasive species in the communities in which they become established is important for 328 identifying their potential threats to biodiversity, and the community-level effects that are 329 likely to occur following their active management (e.g., Bergstrom et al. 2009). We show 330 possible flow-on effects of actively reducing the abundance of a common and highly 331 invasive species (the European rabbit, Orvetolagus cuniculus) on a simulated ecological 332 network, representative of arid Australia. Our findings reveal that rabbit management can 333 immediately benefit native biodiversity at removal rates of up to 40% of the total rabbit 334 population. At removal rates greater than 40%, the positive effects of rabbit management are 335 delayed, but more pronounced. However, if the active management of rabbits were to stop 336 abruptly, the positive effect of small to intermediate fractions of rabbit removal (~40%) 337 would be short-lived, and small mammal populations would benefit more if rabbit control 338 were applied at higher levels. Our findings highlight the importance of considering 339 community dynamics and short and long-term pest management goals in wildlife 340 interventions.

341 The initial decrease in small native mammal abundance in response to large levels of 342 rabbit removal (> 40% removal) was due to two main factors: (i) increased competition for 343 resources with kangaroos, and (ii) hyper-predation by mesopredators (foxes and cats) of the 344 (now more) vulnerable prey. When rabbit abundance was heavily reduced, kangaroos 345 increased their intake of primary resources (a phenomenon observed in the wild; Cooke, 346 unpublished data), causing increased competition for vegetation-based resources with small 347 mammals. At the same time mesopredators remained abundant (at least for a while), and 348 having less prey available, they were forced to switch diets to small native mammals. This 349 potential synergism of bottom-up and top-down pressures has the potential to negatively 350 affect small native mammal abundance when rabbit removal levels are high. After rabbit 351 control ended (post-control period), effects of this perturbation were still noticeable through 352 the food web. This was shown by the recovery of small mammal populations that were 353 depressed by high levels of rabbit removal, and a continued increase in dingo abundance. 354 These two responses are linked. An increase in the abundance of the apex predator facilitates 355 increased control of mesopredators (fox and cats), which is ultimately beneficial for small 356 native mammals (Ritchie & Johnson 2009).

357 These conclusions are somewhat sensitive to the estimates of population growth rate for small mammals, foxes, and rabbits. While population growth rates for foxes and rabbits in 358 359 arid Australia are well established (Hone 1999), estimates for small mammals are less certain, 360 an issue potentially compounded by having grouped small mammals into a single species. 361 Our results were only marginally sensitive to assumptions regarding interaction strengths. 362 This is fortunate because these were the parameters in our model with the greatest level of 363 uncertainty. Importantly, our findings are in direct agreement with previous on-ground 364 studies reporting the bounce-back of native small mammals following severe rabbit 365 population crashes in response to the release of a new biocontrol agent (Pedler et al. 2016).

Furthermore, the role of the dingo as a top predator, which facilitates the maintenance of
biodiversity in Australian ecosystems, has been shown empirically (Letnic, Ritchie, &
Dickman 2012); and increased predation by cats on alternative prey has been documented as
a consequence of rabbit control (Norbury 2001; Murphy *et al.* 2004).

370 Our results highlight the power of using simulation-based ecological-network models 371 to assess the potential effects of controlling invasive species on the wider ecological 372 community. In the context of arid Australia, this is salient because large efforts continue to be 373 directed towards the eradication of rabbits and other invasive species (Cooke et al. 2013); and 374 new bio-control agents (i.e. more virulent strains of rabbit haemorrhagic disease) are 375 scheduled for release in the immediate future (Wishart & Cox 2016). We show that frequent 376 (but not necessarily sustained) large reductions in rabbit abundance are likely to have the 377 most positive benefit for small native mammals. This is because of the predator-prey 378 interaction between rabbits and invasive mesopredators (in the presence of dingoes) and 379 subsequent flow on effects for native mammals.

380 Unexpected detrimental effects of removing invasive species have been observed 381 empirically in other ecosystems (Ballari, Kuebbing & Nuñez 2016), and the importance of 382 applying community-wide approaches for managing invasive species has been recognised (e.g., Bull & Courchamp 2009). For example, a meta-analysis of the effects of lagomorph 383 384 introductions across the globe found that their removal from their exotic range should only be 385 done after considering the whole suite of potential ecosystem responses (Barbar, Hiraldo & 386 Lambertucci 2016). Doing so requires a wider use of community-based approaches in 387 invasion biology and management. Our study is one of the first approaches to provide a more 388 comprehensive, community-wide, understanding of the potential effects of eradicating 389 invasive species (but see Bode, Baker & Plein 2015; McDonald-Madden et al. 2016; Bode et 390 al. 2017). It complements previous studies considering community-wide effects of removing

species in similar Australian ecosystems (e.g., Dexter *et al.* 2013; Colman *et al.* 2014) by
providing a dynamical modelling approach.

393

394 Management implications and applications

395 Rabbits in arid Australia are managed using a 'press and pulse' type framework (Bender, 396 Case & Gilpin 1984), where rabbits are controlled using viral biocontrol agents (press) and 397 episodes of warren ripping and baiting (pulse) (Wells et al. 2016). Our finding that a 398 sustained rate of rabbit removal of 40 % provides the greatest benefit to small mammals has 399 strong implications for the on-ground management of rabbits in their invasive range, because 400 this press mortality rate corresponds closely to disease-induced mortality rates following the 401 long-term establishment of rabbit haemorrhagic disease and myxomatosis in disease 402 burdened rabbit populations (Fordham et al. 2012); the primary biocontrol agents used to 403 manage rabbits in arid Australia. Therefore, if the goal of rabbit management in arid Australia 404 is to provide benefits to small mammal populations (e.g., by facilitating increased population 405 abundances) then it seems clear that the present management strategy, involving a sustained 406 press at intermediate levels of mortality, and/or time-limited removals of higher fractions of 407 the rabbit populations, is appropriate.

408 More broadly, our network-based approach can easily be applied to other systems 409 where there is sufficient information on the strength of interactions between species 410 (functional responses), and population-level responses of species to resources (total 411 responses). For example, our modelling framework could be used to assess the community-412 level effects of widespread badger (Meles meles) culling to stop the spread of tuberculosis 413 (Donnelly et al. 2006). Badgers are arguably keystone species through their role as ecosystem 414 engineers, building burrow networks used by other animals. Badger culling would thus 415 prevent other species, such as, ironically, the European rabbit in its native range, from

successfully colonising and maintaining stable populations. The same role is fulfilled by
digging marsupials in Australia, where the potential community-wide consequence of their
loss (Fleming *et al.* 2014) could also be analysed using a network approach like the one
presented here (e.g. Wallach *et al.* 2016).

420 Furthermore, our modelling approach and framework is suited to examining and 421 predicting the ecological effects of reintroductions (including rewilding), where there is great 422 uncertainty in ecological outcomes (Nogués-Bravo et al. 2016). Instead of simulating species 423 removal, our simulation-based model could be adapted and used to assess the community-424 wide effects of reintroducing top predators (e.g. lynx, dingoes, or wolves) or smaller-bodied, yet also functionally important species (e.g. western quolls, beavers), into areas of their 425 426 historic range where they are no longer found. Food web approaches have been successfully 427 used to reveal the consequences of 'invasions' into complex ecological networks (e.g., 428 Galiana et al. 2014; Lurgi et al. 2014), showing that unexpected outcomes might follow from 429 the introduction of new nodes/species in the network. Similar surprises are likely to occur 430 when reintroducing species through rewilding (e.g., Nogués-Bravo et al. 2016). Therefore, 431 our approach could be used to increase understanding and awareness of what the potential 432 ecological consequences of reintroduction biology and rewilding might be.

433 Among all aspects of invasion biology, biotic interactions between invaders and 434 native species are of particular importance. Yet the effects of invasive species at the 435 community level are typically overlooked (Mellin et al. 2016), primarily because of a lack of 436 data on species interactions and growth rates needed to parameterise and run complex 437 ecological models like our arid-zone rabbit management model. Consequently, far-reaching 438 and potentially deleterious effects of controlling invasive species continue to be overlooked 439 in management decisions. Fortunately, the field of ecological modelling is advancing rapidly 440 in response to increasing computational capabilities, and there is now a push globally for the

441 collection of data that will allow for these state-of-the-art models to be parameterised more
442 frequently (see for example Urban *et al.* 2016).

443 In addition to exploring opportunities to implement our modelling approach to similar management questions in other ecological systems, future extensions to this work should 444 445 include using our model to further explore the importance (for small mammals) of time-446 limited removals of high fractions of the rabbit population, implemented on top of a sustained 447 lower-level mortality rate (i.e., from biocontrol). Moreover, future research should also focus 448 on increasing the size of the food web, to include additional species known to be present in 449 the Australian arid ecosystem; establishing field experiments to better determine the 450 functional form of the competitive relationship between kangaroos and rabbits, which may 451 not be linear (Cooke and Mutze, unpublished data); and investigating the responses of this 452 system to rabbit control in a spatial context, whereby a collection of local model communities 453 like the one used here are linked together in a regional metacommunity. The latter is 454 important because, the effective management of rabbit populations has been recently shown 455 to be highly dependent on the spatial arrangement of local populations (Lurgi *et al.* 2016). 456 Although our model provides a more advanced understanding of the far-reaching 457 implications of rabbit management in arid Australia, we recognise that the model system 458 focuses on one possible ecological scenario, with other, perhaps more complex species 459 interactions, being possible. Importantly, our assumption that the three herbivore species do 460 not exhibit resource partitioning is unlikely to change our conclusions, since the absence of 461 the primary prey (rabbits) for mesopredators will still prompt the decline of small mammal 462 populations. Our treatment of small native mammals as a single species highlights the need to 463 be view management recommendations emerging from our model cautiously, particularly if

they are being implemented at the species level for native small mammals. Future work that

465 extends our approach to explore more complex ecological communities and different466 environmental scenarios is strongly encouraged.

467

468 Conclusions

The full set of responses a community can display after perturbations in the abundance of a species can only be understood when considering all possible interactions within the community. Our model-based framework provides wildlife and pest managers with a better understanding of the potential effects of species removal and control on intact and modified ecosystems. We highlight the need to focus management efforts on invasive prey as well as on invasive predators, and this extends to other systems where 'dominant' prey may play fundamental roles in community structure and ecosystem function.

476

477 Authors' contributions

The design of this project was the result of discussions involving all authors. M.L. generatedthe modelling framework, ran the simulations and analysed the results. All authors

480 contributed to the writing of the manuscript. All authors gave final approval for publication.

481

482 Acknowledgements

We thank Brian Cooke, Tim Doherty, Dave Forsyth, Greg Mutze, Thomas Prowse, Arian
Wallach and Konstans Wells for useful advice and comments. Australian Research Council
Grants (LP12020024, FT140101192) supported M.L. and D.A.F. The authors declare no
conflicts of interest.

487

488 Data accessibility

Source code of the model developed for simulations available via the Dryad Digital
Repository https://doi.org/10.5061/dryad.p1t111n (Lurgi, Ritchie & Fordham 2018).

492 **References**

493 1. Abrams, P.A. (1987) On classifying interactions between populations. *Oecologia*, 73,
494 272-281.

495 2. Amarasekare, P. (2008) Spatial Dynamics of Foodwebs. *Annual Review of Ecology*,
496 *Evolution, and Systematics*, **39**, 479-500.

497 3. Baker, C.M., Gordon, A. & Bode, M. (2016) Ensemble ecosystem modeling for

498 predicting ecosystem response to predator reintroduction. *Conservation Biology*. Accepted.

499 4. Ballari, S.A., Kuebbing, S.E. & Nuñez, M.A. (2016) Potential problems of removing

500 one invasive species at a time: a meta-analysis of the interactions between invasive

501 vertebrates and unexpected effects of removal programs. *PeerJ*, **4**, e2029.

502 5. Barbar, F., Hiraldo, F. & Lambertucci, S.A. (2016) Medium-sized exotic prey create 503 novel food webs: the case of predators and scavengers consuming lagomorphs. *PeerJ*, **4**, 504 e2273.

505 6. Bellard, C., Cassey, P. & Blackburn, T.M. (2016) Alien species as a driver of recent
506 extinctions. *Biology Letters*, 12(2).

507 7. Bender, E.A., Case, T.J. & Gilpin, M.E. (1984) Perturbation Experiments in
508 Community Ecology: Theory and Practice. *Ecology*, 65(1), 1-13.

509 8. Bergstrom, D.M., Lucieer, A., Kiefer, K., Wasley, J., Belbin, L., Pedersen, T.K. &

510 Chown, S.L. (2009) Indirect effects of invasive species removal devastate World Heritage

511 Island. Journal of Applied Ecology, 46, 73-81.

- 512 9. Bode, M., Baker, C. M. & Plein, M. (2015) Eradicating down the food chain: optimal
- 513 multispecies eradication schedules for a commonly encountered invaded island ecosystem.
- 514 *Journal of Applied Ecology*, **52**, 571-579.
- 515 10. Bode, M., Baker, C. M., Benshemesh, J., Burnard, T., Rumpff, L., Hauser, C. E.,
- 516 Lahoz-Monfort, J. J. & Wintle, B. A. (2017) Revealing beliefs: using ensemble ecosystem
- 517 modelling to extrapolate expert beliefs to novel ecological scenarios. *Methods in Ecology and*
- 518 *Evolution*, **8**, 1012-1021.
- 519 11. Bull, L.S. & Courchamp, F. (2009) Management of interacting invasives: ecosystem
- 520 approaches. Invasive Species Management, A Handbook of Principles and Techniques (eds
- 521 M. Clout & P.A. Williams), pp. 232-247. Oxford University Press.
- 522 12. Choquenot, D. & Forsyth, D.M. (2013) Exploitation ecosystems and trophic cascades
 523 in non-equilibrium systems: pasture-red kangaroo-dingo interactions in arid Australia. *Oikos*,
 524 122, 1292-1306.
- 525 13. Colman, N.J., Gordon, C.E., Crowther, M.S., & Letnic, M. (2014) Lethal control of
- 526 an apex predator has unintended cascading effects on forest mammal assemblages.
- 527 *Proceedings of the Royal Society of London B*, **281**, 20133094.
- 528 14. Cooke, B., Chudleigh, P., Simpson, S. & Saunders, G. (2013) The economic benefits
- 529 of the biological control of rabbits in Australia, 1950–2011. Australian Economic History
- 530 *Review*, **53**, 91-107.
- 531 15. Cooke, B., Jones, R. & Gong, W. (2010) An economic decision model of wild rabbit
- 532 Oryctolagus cuniculus control to conserve Australian native vegetation. Wildlife Research,
- 533 **37**:7, 558-565.
- 534 16. Courchamp, F., Chapuis, J.-L. & Pascal, M. (2003) Mammal invaders on islands:
- 535 impact, control and control impact. *Biological Reviews*, **78**:3, 347-383.

- 536 17. Courchamp, F., Langlais, M. & Sugihara, G. (2000) Rabbits killing birds: modelling
 537 the hyperpredation process. *Journal of Animal Ecology*, 69, 154-164.
- 538 18. Davis, N.E., Forsyth, D.M., Triggs, B., Pascoe, C., Benshemesh, J., Robley, A. et al.
- 539 (2015) Interspecific and Geographic Variation in the Diets of Sympatric Carnivores:
- 540 Dingoes/Wild Dogs and Red Foxes in South-Eastern Australia. *PLoS ONE*, **10**(3), e0120975.
- 541 19. Dexter, N., Hudson, M., James, S., MacGregor, C., & Lindenmayer, D.B. (2013)
- 542 Unintended consequences of invasive predator control in an Australian forest: overabundant
- 543 wallabies and vegetation change. *PloS ONE*, **8**(8), e69087.
- 544 20. Doherty, T.S., Glen, A.S., Nimmo, D.G., Ritchie, E.G. & Dickman, C.R. (2016)
- 545 Invasive predators and global biodiversity loss. Proceedings of the National Academy of
- 546 *Sciences*, doi: 10.1073/pnas.1602480113.
- 547 21. Donnelly, C.A., Woodroffe, R., Cox, D.R., Bourne, F.J., Cheeseman, C.L., Clifton-
- 548 Hadley, R.S., *et al.* (2006) Positive and negative effects of widespread badger culling on
- 549 tuberculosis in cattle. *Nature*, **439**, 843-846.
- 550 22. Drossel, B., & McKane, A.J. (2002) Modelling food webs. In Handbook of Graphs
- and Networks (eds S. Bornholdt & H.G. Schuster), pp. 218–247. Wiley-VCH Verlag GmbH
- 552 & Co. KGaA. doi: 10.1002/3527602755.ch10
- 553 23. Fleming, P.A., Anderson, H., Prendergast, A.S., Bretz, M.R., Valentine, L.E. &
- Hardy, G.E. StJ. (2014) Is the loss of Australian digging mammals contributing to a
- deterioration in ecosystem function? *Mammal Review*, **44**, 94-108.
- 556 24. Fordham, D.A., Sinclair, R.G., Peacock, D.E., Mutze, G.J., Kovaliski, J., Cassey, P.,
- 557 Capucci, L. and Brook, B. W. (2012), European rabbit survival and recruitment are linked to
- epidemiological and environmental conditions in their exotic range. *Austral Ecology*, **37**,
- 559 945-957.

560 25. Galiana, N., Lurgi, M., Montoya, J.M. & López, B.C. (2014) Invasions cause

561 biodiversity loss and community simplification in vertebrate food webs. *Oikos*, **123**, 721-728.

562 26. Gibson, L. (2006) The role of lethal control in managing the effects of apparent

563 competition on endangered prey species. *Wildlife Society Bulletin*, **34**:4, 1220-1224.

564 27. Holden, C. & Mutze, G. (2002) The impact of rabbit haemorrhagic disease on

565 introduced predators in the Flinders Ranges, South Australia. *Wildlife Research*, **29**, 615-626.

566 28. Hone, J. (1999) On rate of increase (r): patterns of variation in Australian mammals

- and the implications for wildlife management. *Journal of Applied Ecology*, **36**:5, 709-718.
- 568 29. Johnson, C. (2006) Australia's mammal extinctions: a 50000 year history. Cambridge
- 569 University Press, Melbourne.
- 570 30. Jones, H.P., Holmes, N.D., Butchart, S.H.M., Tershy, B.R., Kappes, P.J., Corkery, I.,

571 Aguirre-Muñoz, A., Armstrong, D.P., Bonnaud, E., Burbidge A.A., et al. (2016) Invasive

572 mammal eradication on islands results in substantial conservation gains. *Proceedings of the*

573 *National Academy of Sciences*, **113**:15, 4033-4038.

- 574 31. Letnic, M., Ritchie, E.G. & Dickman, C.R. (2012) Top predators as biodiversity
- 575 regulators: the dingo *Canis lupus dingo* as a case study. *Biological Reviews*, **87**:2, 390-413.

576 32. Lurgi, M., Galiana, N., López, B.C., Joppa, L.N. & Montoya J.M. (2014) Network

577 complexity and species traits mediate the effects of biological invasions on dynamic food

- 578 webs. *Frontiers in Ecology and Evolution*, **2**, 36.
- 579 33. Lurgi, M., Ritchie E.G. & Fordham D.A. (2018) Source code from: Eradicating
- abundant invasive prey could cause unexpected and varied biodiversity outcomes: the
- 581 importance of multi-species interactions. Dryad Digital Repository.
- 582 https://doi.org/10.5061/dryad.p1t111n
- 583 34. Lurgi, M., Wells, K., Kennedy, M., Campbell, S. & Fordham, D.A. (2016) A
- Landscape Approach to Invasive Species Management. *PLoS ONE*, **11**:7, e0160417.

- 585 35. May, R.M. (1973) *Stability and complexity in model ecosystems*. Princeton University
 586 Press.
- 587 36. McDonald-Madden, E., Sabbadin, R., Game, E.T., Baxter, P.W.J., Chadès, I. &
- 588 Possingham, H.P. (2016) Using food-web theory to conserve ecosystems. *Nature*
- 589 *Communications*, 7, 10245.
- 590 37. Mellin, C., Lurgi, M., Matthews, S., MacNeil, M.A., Caley, M.J., Bax, N.,
- 591 Przesławski, R. & Fordham, D.A. (2016) Forecasting marine invasions under climate change:
- 592 Biotic interactions and demographic processes matter. *Biological Conservation*, **204**(B), 459-
- 593
 467.
- 594 38. Menge, B.A. (1995) Indirect effects in marine rocky intertidal interaction webs:
- 595 Patterns and importance. *Ecological Monographs*, **65**, 21–74. doi:10.2307/2937158
- 596 39. Mougi, A. (2016) The roles of amensalistic and commensalistic interactions in large
 597 ecological network stability. *Scientific Reports*, 6, 29929.
- 598 40. Murphy, E.C., Keedwell, R.J., Brown, K.P. & Westbrooke I. (2004) Diet of
- mammalian predators in braided river beds in the central South Island, New Zealand. *Wildlife Research*, **31**, 631-638.
- 41. Nogués-Bravo, D., Simberloff, D., Rahbek, C. & Sanders, N.J. (2016) Rewilding is
 the new Pandora's box in conservation. *Current Biology*, 26:3, 87-91.
- 603 42. Norbury, G. (2001) Conserving dryland lizards by reducing predator-mediated
- apparent competition and direct competition with introduced rabbits. Journal of Applied
- 605 *Ecology*, **38**, 1350–1361.
- 606 43. Norton, J. (2015) An introduction to sensitivity assessment of simulation models.
- 607 Environmental Modelling & Software, **69**, 166-174.

- 44. Pech, R.P. & Hood, G.M. (1998) Foxes, rabbits, alternative prey and rabbit calicivirus
- 609 disease: consequences of a new biological control agent for an outbreaking species in
- 610 Australia. *Journal of Applied Ecology*, **35**, 434-453.
- 611 45. Pedler, R.D., Brandle, R., Read, J.L., Southgate, R., Bird, P. & Moseby, K.E. (2016)
- 612 Rabbit biocontrol and landscape-scale recovery of threatened desert mammals. *Conservation*
- 613 *Biology*, **30**, 774-782.
- 614 46. Pimm, S.L. (1984) The complexity and stability of ecosystems. *Nature*, **307**, 321-326.
- 615 47. Pople, A.R., Grigg, G.C., Phinn, S.R., Menke, N., McAlpine, C. & Possingham, H.P.
- 616 (2010) Reassessing spatial and temporal dynamics of kangaroo populations. *Macropods: the*
- 617 biology of kangaroos, wallabies and rat-kangaroos (eds G. Coulson & M. Eldridge), pp. 197-
- 618 210. CSIRO Publishing, Melbourne.
- 619 48. Prowse, T.A.A., Johnson, C.N., Cassey, P., Bradshaw, C.J.A. & Brook, B.W. (2015)
- 620 Ecological and economic benefits to cattle rangelands of restoring an apex predator. Journal
- 621 *of Applied Ecology*, **52**, 455-466.
- 622 49. R Development Core Team. (2013) R: A Language and Environment for Statistical
- 623 *Computing*. R Foundation for Statistical Computing, Vienna, Switzerland.
- 624 50. Read, J. & Bowen, Z. (2001) Population dynamics, diet and aspects of the biology of
- 625 feral cats and foxes in arid South Australia. *Wildlife Research*, **28**:2, 195-203.
- 626 51. Ritchie, E.G. & Johnson, C.N. (2009) Predator interactions, mesopredator release and
- 627 biodiversity conservation. *Ecology Letters*, **12**, 982-998.
- 628 52. Robley, A., Reddiex, B., Arthur T., Pech R. & Forsyth, D. (2004) Interactions
- 629 between feral cats, foxes, native carnivores, and rabbits in Australia. Department of the
- 630 Environment and Heritage, Canberra.
- 631 53. Schmitz, O. J. (1997) Press perturbations and the predictability of ecological
- 632 interactions in a food web. *Ecology*, **78**, 55-69.

- 633 54. Urban, M.C., Bocedi, G., Hendry, A.P., Mihoub, J.-B., Pe'er, G., Singer, A., Bridle,
- 534 J.R., Crozier, L.G., De Meester, L., Godsoe, W., Gonzalez, A., et al. (2016). Improving the
- 635 forecast for biodiversity under climate change. *Science*, **353**:6304, aad8466.
- 636 55. Wallach, A.D., Dekker, A.H., Lurgi, M., Montoya, J.M., Fordham, D.A. & Ritchie,
- 637 E.G. (2017) Trophic cascades in 3D: network analysis reveals how apex predators structure
- 638 ecosystems. *Methods in Ecology and Evolution*, **8**, 135-142.
- 639 56. Wells, K., Cassey, P., Sinclair, R.G., Mutze, G.J., Peacock, D.E., Lacy, R.C., Cooke,
- 640 B.D., O'Hara, R.B., Brook, B.W. & Fordham, D.A. (2016) Targeting season and age for
- optimizing control of invasive rabbits. *Journal of Wildlife Management*, **80**, 990-999.
- 642 57. Wishart, J. & Cox, T. (2016) Rollout of RHDV1 K5 in Australia: information guide.
- 643 PestSmart Toolkit publication. Invasive Animals Cooperative Research Centre, Canberra,
- 644 Australia.

645 Tables

Table 1. Key formulas for the structure of the food web model. See Appendix S1 for a detailed explanation of

647 Table S1 for species-specific parameter values.

Model	Variables
Primary productivity $\Delta V = -55.12 - 0.0153V - 0.00056V^2 + 2.5Y$	V = Pasture biomass, Y
Numerical response of herbivores $r_{N,t} = -a_N + c_N [1 - \exp(-d_N V_{t-1})] - P_{t-1}$	$N =$ species, $a_N =$ maximum which a_N is ameliorated biomass at previous time $L_{F,t}$ and $M_{D,N,t}$ on species
Functional response of herbivores $B_{t,N} = \left(w_N^{3/4}\right) v_N [1 - \exp\left(-V_t/f_N\right)](X_{t-1})(365/4)$	w_N = herbivore species consumption rate of he = foraging efficiency, λ
Numerical response of foxes and cats $r_{N,t} = -a_N + c_N [1 - \exp(-d_N V_{t-1})] - P_{t-1}$	$N =$ species, $a_N =$ maxim predation, $c_N =$ rate at w efficiency, $V_{t-1} =$ dingo killed by dingoes (meso
Functional response of foxes to rabbits $g_{F,t} = (k/w)R_{t-1}^2/(R_{t-1}^2 + H_{III}^2)$	k = maximum consump abundance, $H_{III} =$ half s
Functional response of foxes or cats to small native prey and of cats to rabbits $l_{F,t} = (k/w)S_{t-1}/(S_{t-1} + H_{II})$	k = maximum consump average weight, $S =$ sm

saturation term for Typ

 $g_{F,t}$ = predation rate (for fox or cat abundance)

 $l_{F,t}$ = predation rate (fu predation rate (function consumption rate, F = abundance

 a_D = maximum instanta rate of dingo on all preefficiency, D_{t-1} = dingo carrying capacity

 $k_{D,N}$ = maximum intake $f_{D,N}$ = foraging efficience

 $m_{D,N,t}$ = predation rate (= herbivore or mesopre

Total predation rate per rabbit by fox or cat

$$G_{F,t} = (365/4)(g_{F,t}F_{t-1})/R_{t-1}$$

Total predation per small mammal by fox or cat

$$L_{F,t} = (365/4)(l_{F,t}(1 - g_{F,t}/k) F_{t-1})/S_{t-1}$$

Numerical response of dingoes

$$r_{D,t} = \begin{cases} -a_D + m_{D,N,t} \times d_D, & -a_D + m_{D,N,t} \times d_D < 0\\ \left(-a_D + m_{D,N,t} \times d_D \right) \left(1 - \frac{D_{t-1}}{K_D} \right), & -a_D + m_{D,N,t} \times d_D \ge 0 \end{cases}$$

Functional response of dingoes to rabbits or kangaroos $m_{D,N,t} = k_{D,N} [1 - \exp(-X_{t-1}/f_{D,N})]$

Total predation per animal by dingo

 $M_{D,N,t} = (365/4)(m_{D,N,t}D_{t-1})/X_{t-1}$

648

649 Figures captions

650

651 Fig. 1. Ways in which the effects of rabbit removal could cascade through an Australian 652 arid ecosystem. Based on previous studies (Read & Bowen 2001; Holden & Mutze 2002; and Pedler et al. 2016) we hypothesise possible flow-on effects of rabbit removal on the 653 654 abundances of other key species in the Australian arid ecosystem. We show potential ecosystem states corresponding to different phases of rabbit control: (i) pre-control, (ii) 655 656 immediate post-control, (iii) post-control with sustained control, and (iv) post-control when control is not sustained. Symbols +, -, and * refer to relative abundance of species 657 658 populations and their change in response to rabbit numbers. In the pre-control ecosystem state 659 classifications of relative abundances are given: S = scarce, A = abundant, VA = very 660 abundant. In the post control scenarios: - = moderate decline, -- = steep decline, + = moderate increase, ++ = steep increase, * = stable). 661

662 Fig. 2: Simplified version of the Australian arid ecosystem food web. Animal silhouettes

- 663 represent species in the food web and arrows between them ecological interactions. These can
- be either trophic (as in the case of consumer-resource relationships) or amensalistic (as those
- between the dingo and both mesopredators, cat and fox). Each arrow corresponds to an
- 666 interaction in the dynamical model (see methods).

667 Fig. 3. Effects of rabbit removal on small native mammal and mesopredators. Change in median abundance (calculated for the last 10 years of the rabbit control period) from the no 668 rabbit control baseline plotted against the fraction of rabbit removal for three species in the 669 food web: small mammal, cat and fox. Values below 0 represent smaller abundances 670 compared to a no rabbit control scenario. Points represent the mean abundance values across 671 the 5000 replicates. Lines show a local polynomial regression fit to the whole data set (i.e., 672 5000 replicates per fraction of rabbit removal). Shaded areas represent 90% confidence 673 674 intervals on the simulated data.

675 Fig. 4. Potential mechanisms driving changes in the abundances of a small native

676 **mammal**. Plots show resource use (vegetation biomass intake) by the kangaroo population

677 (a) and the per capita predation rate by cats (b) and foxes (c) on small mammals (biomass of

678 small mammals eaten) for different fractions of rabbit removal across 5,000 replicated

- 679 simulations for each removal fraction. Solid line inside boxes shows the median. Bottom and
- 680 top of boxes are the 25th and 75th percentiles (i.e., lower and upper quartiles), respectively.
- 681 Whiskers above and below boxes show maximum (or +1.5 times the interquartile range,
- 682 whatever is smaller), and minimum (or -1.5 times the interquartile range, whatever is larger)
- values, respectively. Vegetation biomass intake is measured in kg and per capita predation
- rate is the fraction of biomass of prey consumed by an individual predator.

685 Fig. 5. Effect of rabbit removal on dingo abundance. Left panel shows the difference in 686 dingo median abundance (vs. no rabbit control) as a function of rabbit control. Points 687 represent the mean across 5000 replicates. Lines show the fit of a polynomial regression model to the data (i.e., 5000 replicates per fraction of rabbit removal). Shaded area depicts 688 689 the 90% confidence interval on the simulated data. Box plots in the right panels show 690 changes in the dietary intake (i.e., the median of the number of individuals of prey eaten by 691 the predator population) of kangaroo and rabbits by dingoes in response to different levels of 692 rabbit removal. Solid line inside boxes shows the median. Bottom and top of boxes are the 25th and 75th percentiles (i.e., lower and upper quartiles), respectively. 693

694 Fig. 6. Effect of rabbit removal on small native mammal after rabbit removal period. Left panel shows change in small mammal abundance over time, when compared with the 695 no rabbit removal baseline, following the termination of rabbit control at levels of 10 to 90% 696 697 removal. Numbers below 0 represent abundance levels smaller than in the absence of rabbit 698 control. Lines show a local polynomial regression fit to the whole data set (i.e., 5000 699 replicates per fraction of rabbit removal). Shaded area depicts the 90% confidence interval of 700 the fit. Box plots in the right panels show changes in the removal of vegetation biomass by 701 kangaroo (top) and changes in the per capita predation rate of small native mammal by cat (bottom), through different levels of rabbit removal. Solid line inside boxes shows the 702 median. Bottom and top of boxes are the 25th and 75th percentiles (i.e., lower and upper 703 704 quartiles), respectively.

- 705 Supporting Information
- 706 Additional Supporting Information may be found in the online version of this article:

707

- 708 Appendix S1. Food web model specification.
- 709 Table S1. Model parameters and values.
- 710 Appendix S2. Estimation of initial abundance ranges for the species in the model.
- 711 Appendix S3. Source code for the model in R.
- 712 Fig. S1. Effects of rabbit control on kangaroo abundance.
- 713 Fig. S2. Recovery of rabbit populations after the removal period for different levels of
- 714 rabbit control.
- 715 Fig. S3. Model sensitivity to parameter values.
- 716