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Abstract 15 

Context 16 

Effective landscape control of invasive species is context-dependent due to the interplay between the landscape 17 
structure, the local population dynamics, and metapopulation processes. We use a modelling approach 18 
incorporating these three elements to explore the drivers of recovery of populations of invasive species after 19 
control.  20 

Objectives 21 

We aim to improve our understanding of the factors influencing the landscape control of invasive species. 22 

Methods 23 

We focus on the case study of invasive brushtail possum (Trichosurus vulpecula) control in New Zealand. We 24 
assess how 13 covariates describing the landscape, patch, and population features influence the time of population 25 
recovery to a management density threshold of two possums/ha. We demonstrate the effects of those covariates 26 
on population recovery under three scenarios of population growth: logistic growth, strong Allee effects, and weak 27 
Allee effects.  28 

Results 29 
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Recovery times were rapid regardless of the simulated population dynamics (average recovery time < 2 years), 30 
although populations experiencing Allee effects took longer to recover than those growing logistically. Our results 31 
indicate that habitat availability and patch area play a key role in reducing times to recovery after control, and this 32 
relationship is consistent across the three simulated scenarios.  33 

Conclusions 34 

The control of invasive possum populations in patchy landscapes would benefit from a patch-level management 35 
approach (considering each patch as an independent management unit), whereas simple landscapes would be 36 
better controlled by taking a landscape-level view (the landscape as the management unit). Future research should 37 
testing the predictions of our models with empirical data to refine control operations. 38 

 39 

Keywords: Allee effects; brushtail possum; habitat availability; landscape and patch metrics; New Zealand 40 

  41 
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Introduction 42 

 Invasive alien species, the subset of alien species that spread and establish populations throughout a 43 
recipient landscape, are a major contributor to the current biodiversity crisis (Bellard et al. 2016). Despite the 44 
promise shown by novel techniques such as gene-editing (Piaggio et al. 2017) for eradicating invasive species, 45 
long-term control for maintaining population densities below a certain threshold remains the major strategy to 46 
manage the impacts of invasive species over large landscapes (With 2002; Lurgi et al. 2016; Braysher 2017). 47 
Control is justified by empirical density-impact curves, which describe the relationship between the invasive 48 
species density and the damage caused (Yokomizo et al. 2009; Ricciardi et al. 2013; Norbury et al. 2015). 49 
Population suppression based on density-impact curves to define target thresholds is currently considered the best 50 
practice in invasive species management at landscape levels whenever eradication is deemed unfeasible (Bomford 51 
and O’Brien 1995; Braysher 2017; Kopf et al. 2017).  52 

The control of invasive species across whole landscapes is highly desirable to mitigate their impacts, but 53 
it can be plagued with severe operational and strategic complexities and trade-offs (Kopf et al. 2017). Effective 54 
landscape control of invasive species is complicated by a myriad of factors, including landscape structure, 55 
potential metapopulation dynamics, landholder collaboration, Allee effects, and the ecology of the target species 56 
itself (Hanski and Gaggiotti 2004; Taylor and Hastings 2005; Baker 2017; Glen et al. 2017; Wilkins et al. 2018). 57 
In turn, this means that effective control strategies are highly context-dependent and may require a reasonable 58 
level of knowledge about both the target invasive species and the landscape to be able to achieve goals and obtain 59 
benefits. Furthermore, control must be conducted in perpetuity to maintain benefits, lest the invasive population 60 
will recover and produce impacts again. Consequently, it is crucial to identify the minimum period between 61 
control operations required to meet the management objectives and make long-term landscape-level control 62 
feasible. Controlling the invasive species too frequently will waste valuable resources, whereas infrequent control 63 
operations will not achieve the management objectives. 64 

Under the circumstances surrounding the management of invasive species, characterised by severe 65 
uncertainties, a realistic quantitative model grounded on ecological theory can help identify major knowledge 66 
gaps and features of the landscape and population dynamics that are essential for designing effective and targeted 67 
control strategies (Lurgi et al. 2016; Anderson et al. 2017; Dietze 2017; Dietze et al. 2018). Alternately, when 68 
framed in an adaptive management context, lessons from such realistic models can provide a solid basis to 69 
commence operations even in the absence of detailed data on the landscape and populations within the area to be 70 
managed (Conroy and Peterson 2013; Salafsky et al. 2016; Holden and Ellner 2016; Dietze et al. 2018). Here, we 71 
developed a quantitative simulation model to investigate how population and metapopulation dynamics of an 72 
invasive species respond to population reduction in large landscapes.  73 

We focussed on the management of invasive brushtail possums (Trichosurus vulpecula; possum 74 
hereafter) populations in New Zealand as a case study. We addressed how the time of possum recovery to a 75 
specified density threshold following control was influenced by the compounded effects of landscape and patch 76 
features, population growth and dispersal rates, and Allee effects (Fig. 1 and Table 1). Possums were brought 77 
from Australia and deliberately released from the 1830s until the 1920s to establish a fur trade industry in New 78 
Zealand, and by the end of the 20th century they had spread and colonised most of the country (Montague 2000; 79 
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Cowan 2001; Long 2003). Invasive possums cause substantial negative ecological impacts on the native fauna 80 
and flora of New Zealand, via depredation and intensive browsing, and are the main wild reservoir of bovine 81 
tuberculosis, which severely affects livestock health (Office of the Parliamentary Commissioner for the 82 
Environment 1994; Montague 2000; Cowan 2001; Nugent et al. 2001, 2015; Norbury et al. 2015; Byrom et al. 83 
2016). Consequently, invasive possum populations are the subject of extensive management campaigns to reduce 84 
their densities to near zero, with the over-arching aim of minimising their impacts on native species and hamper 85 
their role as bovine tuberculosis vectors (Montague 2000; Russell et al. 2015; Anderson et al. 2015; Livingstone 86 
et al. 2015; Byrom et al. 2016; Gormley et al. 2016; Forsyth et al. 2018). Not surprisingly, the possum ecology in 87 
the country is well studied, which afforded us to opportunity develop realistic quantitative models of their 88 
population dynamics at landscape levels (Hickling and Pekelharing 1989; Montague 2000; Cowan 2001; Ramsey 89 
and Efford 2010; Rouco et al. 2013; Livingstone et al. 2015).  90 

 91 
We identified the factors that affect the time to recover to a density threshold of two inds/ha under a 92 

variety of circumstances. Two possums per hectare is a density below which possum populations produce 93 
negligible impacts on native plant species in New Zealand (Nugent et al. 2001; Norbury et al. 2015). Invasive 94 
possum populations in New Zealand experience density-dependent reponses to changes in abundances, pointing 95 
to the potential impact of Allee effects on the population dynamics of the species (Clout and Efford 1984; Cowan 96 
et al. 1997; Ramsey and Efford 2010). Allee effects are an important driver of biological invasions, and can both 97 
help populations overcome control efforts or be exploited by managers to improve the efficacy of management 98 
actions (Taylor and Hastings 2005; Berec et al. 2007; Courchamp et al. 2008; Hui and Richardson 2017; Wilkins 99 
et al. 2018). Given the importance of Allee effects, we examined the time to recover under three population 100 
dynamics scenarios: logistic model (without Allee effects), weak Allee effects, and strong Allee effects. 101 
Populations subject to strong Allee effects are characterised by a population size threshold below which the 102 
population growth rate is negative (Boukal and Berec 2002; Courchamp et al. 2008). Alternately, positive 103 
population growth rates characterise weak Allee effects (Courchamp et al. 2008). In the context of invasive 104 
possum populations, weak Allee effects may thus lead to either rapid recovery after control, or to local population 105 
extinction if populations are driven to sizes below a given Allee treshold under which extinction is virtually 106 
unavoidable (Taylor and Hastings 2005; Berec et al. 2007; Hui and Richardson 2017).Our results can be adapted 107 
to plan robust landscape control strategies either by focussing management efforts on the factors more likely to 108 
increase the times to recovery or by drafting research strategies to better understand those factors before 109 
implementing any control operation. Although we have focused on investigating the landscape control of invasive 110 
possum populations as a case example, our research methods and key conclusions offer insights into the ecological 111 
responses of populations to a severe disturbance (i.e., population reduction). Finally, our findings provide testable 112 
quantitative relationships to explore empirically in future research. 113 

 114 

Material and methods 115 

Landscape generation 116 
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 We generated artificial landscapes as a 10x10km square comprised of suitable and unsuitable habitat, 117 
which were or were not occupied by possum populations, respectively. The proportion of suitable habitat in the 118 
landscape was drawn from a uniform distribution, ~U(0.1, 0.6), to represent a relatively ample range of values 119 
while still allowing for a fraction of unsuitable habitat. The minimum value of 40% of unsuitable habitat was set 120 
to correspond to the average fraction of farmland cover in New Zealand 121 
(http://archive.stats.govt.nz/browse_for_stats/environment/environmental-reporting-series/environmental-122 
indicators/Home/Land/land-use.aspx), which is usually considered as poor possum habitat (Montague 2000). 123 
Once the proportion of suitable landscape was defined, we divided it into habitat patches, characteristic of 124 
spatially-structured metapopulations (Hanski 1998; Hanski and Ovaskainen 2003; Hanski and Gaggiotti 2004),  125 
using a rejection algorithm (see Online Resource 1). After defining the number of patches and their corresponding 126 
areas (km2), we positioned all of them in the geographical space by sampling without replacement x and y-centroid 127 
coordinates from the landscape. 128 

Network theory provides a natural framework for conceptualising and manipulating landscapes (Rozenfeld 129 
et al. 2008; Chadès et al. 2011; Lurgi et al. 2016). We converted our landscapes into networks of interconnected 130 
patches (nodes in the terminology of network theory) by considering connected (linked) patches whose centroids 131 
are at a Euclidean distance less than the annual dispersal distance between patches of the brushtail possum (see 132 
Patch and landscape population dynamics section below). This is a reasonable assumption given that landscape 133 
connectivity should be assessed based on the movement capacities of the species (Taylor et al. 2006; Glen et al. 134 
2017).  135 

 136 

Patch and landscape population dynamics 137 

We modelled the population size at each local patch, incorporating both local and metapopulation 138 
dynamics, at the end of any given year, Ni, t+1, as: 139 

 140 

  Ni, t+1 = Ri,t+1 - Ei,t+1 + Σ Ii,j,t+1   (1) 141 

where Ri,t+1 is the patch population size resulting from local population dynamics incorporating stochastic effects 142 
(see below), Ei,t+1 is the total annual number of individuals emigrating from the patch, and Σ Ii,j,t+1 is the total 143 
annual number of individuals immigrating into the local patch from all other patches in the landscape. The 144 
population dynamics at each local patch were modelled using a logistic equation incorporating annual birth and 145 
death processes: 146 

 147 

𝜇𝜇𝑖𝑖,𝑡𝑡+1 = 𝑁𝑁𝑖𝑖,𝑡𝑡 + �rN𝑖𝑖,𝑡𝑡� �
𝐾𝐾𝑖𝑖−𝑁𝑁𝑖𝑖,𝑡𝑡
𝐾𝐾𝑖𝑖

�   (2) 148 

 149 
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where Ni,t is the population size in patch i at time t, Ki its carrying capacity (here equated to the patch population 150 
size in time 1 for simplicity), and r ~ U(0.1, 1) is the range of potential possum per capita growth rates (Hickling 151 
and Pekelharing 1989; Hone et al. 2010). We incorporated local demographic and environmental stochastic effects 152 
by drawing patch population sizes, Ri,t+1, from a Poisson distribution: 153 

 154 

Ri,t+1 ~ Poisson(μi,t+1)    (3) 155 

 156 

Local population growth and metapopulation dynamics were modelled as asynchronous processes. This is 157 
representative of species for which reproduction and dispersal occur as relatively discrete events separated in time, 158 
as it is the case for possums (Clout and Efford 1984; Montague 2000). Dispersal between local populations 159 
occurred after local population growth and was modelled as a two-step process. First, the total annual number of 160 
individual emigrating from patch i, Ei,t+1, was drawn from a binomial distribution: 161 

 162 

Ei,t+1 ~ Binom(Ri,t+1, pdi)    (4) 163 

 164 

where pdi was the individual probability of dispersal of individuals in patch, i drawn from Beta(2, 5). These values 165 
of the Beta distribution parameters for the probability of annual individual dispersal were set to peak around 0.2, 166 
yielding values representative of dispersal in possum populations (Ramsey and Efford 2010; Etherington et al. 167 
2014). Second, the dispersal of emigrants from patch i to other local populations was modelled using a dispersal 168 
kernel:  169 

 170 

dk𝑖𝑖,𝑗𝑗 = exp−cD𝑖𝑖,𝑗𝑗     (5) 171 

c ~ U(0.1, 1)    (6) 172 

 173 

where dki,j defined the dispersal kernel between the origin patch i and the destination patch j as an exponential 174 
distance-decay function (Nathan et al. 2012), Di,j was the Euclidean distance between the centroids of the patches 175 
i and j, and c was the shape parameter of the dispersal kernel. Values for c were drawn from a uniform distribution 176 
bounded by the inverse of the dispersal distance (i.e., 1/km). This means that 1 and 10 kilometres were the 177 
simulated minimum and maximum dispersal distances of individuals, respectively (Ramsey and Efford 2010; 178 
Etherington et al. 2014).  179 

The total annual number of individuals immigrating to patch i from patch j (Ii,j,t+1), was the result of a 180 
multinomial draw to ensure that all dispersing individuals from patch j arrive in another patch in the landscape:  181 
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 182 

It+1 ~ Multinom(Ej, t+1, dkj) (7) 183 

 184 

where It+1 was a vector of the number of new immigrants into patches i ≠ j, and dkj was a vector of the dispersal 185 
kernel values from patch j to all patches i ≠ j. This modelling approach for Ii,j,t+1 assumes that all dispersing 186 
possums survive and settle elsewhere, consistent with the low mortality and high settlement rates of dispersing 187 
possums in New Zealand landscapes (Clout and Efford 1984; Cowan et al. 1997). We accommodated Allee effects 188 
in our modelling framework by substituting equation (2) with the following (Boukal and Berec 2002): 189 

 190 

𝜇𝜇𝑖𝑖,𝑡𝑡+1 = 𝑁𝑁𝑖𝑖,𝑡𝑡 + �𝑟𝑟𝑖𝑖𝑁𝑁𝑖𝑖,𝑡𝑡� �1 − 𝑁𝑁𝑖𝑖,𝑡𝑡
𝐾𝐾𝑖𝑖
� �𝑁𝑁𝑖𝑖,𝑡𝑡

𝐾𝐾𝑖𝑖
− 𝐴𝐴𝑖𝑖

𝐾𝐾𝑖𝑖
�  (8) 191 

 Ai = 0.2Ki     (9) 192 

 193 

where Ai was the patch-specific Allee threshold and all other parameters were defined as in (2). The Allee 194 
threshold was set to be at 20% of the patch carrying capacity, and we simulated weak and strong Allee effects by 195 
making Ai either negative or positive, respectively (Boukal and Berec 2002). The 20% threshold value for the 196 
Allee effect to kick in reflects the finding of potentially density-dependent possum responses to population 197 
suppression below 20% of their initial densities (Clout and Efford 1984; Cowan et al. 1997; Ramsey and Efford 198 
2010).   199 

 200 

Numerical simulations 201 

 We ran 200 simulations of each three scenarios: logistic model (without Allee effects), weak Allee 202 
effects, and strong Allee effects. Simulations for each of these three scenarios were conducted independently. 203 
During each simulation (Fig. 1), we initialised our model, as described above, and ran it for a total of 21 years. 204 
Our simulations spanned 21 years because we induced population control on year 10 in all habitat patches and, 205 
therefore, we simulated 10 years of population dynamics before control (a sufficient burn-in time for the 206 
population size to reach the steady state; Fig. 1), and 10 years after control to evaluate whether populations recover 207 
within a decade of control. At the beginning of the simulations, each patch i was assigned a carrying capacity, Ki, 208 
and initial population size, Ni, t1, equal to the carrying capacity and given by: 209 

 210 

  Ki = Ni, t1 = Dp APi   (10) 211 

  Dp ~ Poisson(λ = 500)   (11) 212 

 213 
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where APi is the area of the patch (km2), and Dp is the average density (ind/km2) of the species in the 214 
landscape. The value for Dp was independently drawn for each simulation from a Poisson distribution with a 215 
mean of 500 inds/km2 (Montague 2000; Ruscoe et al. 2011; Rouco et al. 2013).  216 

Population control was induced as a pulse perturbation in each patch on year 10 of the simulations by 217 
drawing the fraction of the population remaining in the patch after control from a Beta distribution, ~Beta(1,1). 218 
This parameterisation of the Beta distribution implies that, across all the patches, the average percentage of the 219 
initial population remaining after control was 50%, with values spanning the wide range between 3% and 98% 220 
(see Table 1). Population control was induced before growth and dispersal on year 10. All the simulations were 221 
conducted in R  (R Development Core Team 2015), and the annotated code is available in Online Resource 1.  222 

 223 

Statistical analysis 224 

 We analysed the output of our simulations by modelling the time to recovery on each patch (response 225 
variable) as a function of 13 covariates (explanatory covariates) that were either input to or derived from our 226 
simulations (see Table 1 for details). These 13 covariates balance a good representation of the local and landscape 227 
dynamics with the possibility of being measured in empirical situations, making tests of our model predictions 228 
more feasible. Overall, we obtained 4229, 4240, and 4177 parameter combinations for the logistic model, weak 229 
Allee, and strong Allee scenarios, respectively. Note that the number of combinations exceeds the number of 230 
simulations, and varies across the three scenarios, because we produced one landscape per simulation, within each 231 
of which the number of patches is variable and larger than one. There was one parameter combination per patch 232 
and replicated simulation. We employed Bayesian regularised time-to-event regressions to model times to 233 
recovery as a function of the 13 landscape, patch, species, and population-level covariates. Statistical 234 
regularisation, including Bayesian regularisation, produces robust statistical models even in cases when there are 235 
many covariates, and there is likely cross-correlation between the covariates (Gelman et al. 2013; Hooten and 236 
Hobbs 2015). In our models, times to recovery (Tr) were assumed to be random vectors drawn from an exponential 237 
distribution with the rate parameter (ω) being modelled as a function of the 13 covariates using a log link. The 238 
regularised regressions were defined as follows: 239 

 240 

 log(𝜔𝜔𝑖𝑖) = 𝛽𝛽0 + � 𝛽𝛽𝑧𝑧𝑋𝑋𝑖𝑖,𝑧𝑧
13
𝑧𝑧=1  (12) 241 

 242 

 Tri ~ Exp(ωi)   (13) 243 

 244 

where β0 and βz are the intercept and slopes of the regression, and Xi,z, z = 1, …, 13, are the 13 covariates. Note 245 
that in this type of regression there is an inverse relationship between the rate parameter (ω) and the time to 246 
recovery. Typically, this leads to a negative (positive) parameter estimate, e.g., a negative (positive) slope, 247 
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resulting in a positive (negative) relationship between the parameter and the time to recovery. The exponential 248 
distributions were censored at 10 years after control to account for the fact that some patch populations did not 249 
recover after the simulated period finished. All the covariates were standardised (centred by their mean and scaled 250 
by the standard deviation) for the analyses. We used relatively uninformative Normal priors for the intercept, 251 
~N(0, σ = 3.16). We used Normal priors on the slopes of all the covariates to construct the regularised model, 252 
~N(0, σ), σ~Exp(0.5). The Exponential prior on the standard deviation shrinks the posterior estimates of the slopes 253 
towards zero when they contribute little to explaining the variability in the time to recovery, resulting in a 254 
regularised model (O’Hara and Sillanpää 2009; Gelman et al. 2013; Hooten and Hobbs 2015). Therefore, only 255 
those covariates with an important influence on time to recovery will have an effect size substantially different 256 
from zero, whereas the other covariates will have a minimal contribution to the final structure of the time-to-event 257 
regressions. 258 

 We fit the Bayesian regularised models using the NIMBLE package for the R statistical environment (R 259 
Development Core Team 2015; de Valpine et al. 2017). We ran the Bayesian models using three chains with 260 
20,000 iterations each, and no thinning. After visually checking for mixing and convergence of the chains, we 261 
discarded the first 2,000 iterations of each chain as burn-in time. Our procedures produced 54,000 draws of the 262 
marginal posterior distribution of each parameter in the time-to-event regressions. We fit the Bayesian models 263 
independently to the data from the three population growth scenarios. We evaluated the goodness of fit of the 264 
models by calculating Bayesian p-values based on the difference in the Freeman-Tukey test values between the 265 
fitted model and data simulated under the assumption that the model was correct (Gelman et al. 2013; Kéry and 266 
Royle 2016). Extreme Bayesian p-values (e.g., < 0.05 or > 0.95) tend to indicate a poorly fitting model, whereas 267 
the closer Bayesian p-values are to 0.5 the better is the fit of the model (Gelman et al. 2013). The annotated 268 
NIMBLE code for fitting the time-to-event regressions is available in Online Resource 1. 269 

 270 

Results 271 

Our simulations indicate that Allee effects have an important effect on times to population recovery 272 
compared to logistically growing populations. Populations following a logistic growth were likely to recover 273 
within the 10-year period after control (11.0% of simulated populations did not recover; 474 of 4226 simulated 274 
populations). The strength of Allee effects decreased the likelihood of recovery substantially. Under the weak 275 
Allee effect scenario, only 18.9% (802 of 4240) populations were not able to recover, while under strong Allee 276 
effects this number increased to 34.6% (1447 of 4177) populations. In the cases where populations reached the 277 
threshold density, the recovery was fast after control, with mean recovery times of less than two years in the three 278 
scenarios. Nonetheless, whenever there were weak Allee effects, those populations that recovered within the 10-279 
year period took marginally longer to reach the density threshold (weak Allee effects, mean ± standard deviation: 280 
1.81 ± 1.90 years, 95% Credible Intervals: [1, 9]) than populations growing according to a logistic model (1.68 ± 281 
1.62, 95% CIs: [1, 7]) or experiencing strong Allee effects (1.59 ± 1.64; 95% CIs: [1, 7]). 282 

 Our Bayesian regularised regressions fitted the simulated data adequately, as indicated by non-extreme 283 
Bayesian p-values in the three scenarios (logistic model: 0.39; weak Allee effects: 0.65; strong Allee effects: 284 
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0.54). The regressions revealed that the times to recovery were mainly determined by the same set of covariates 285 
regardless of the scenario (Fig. 2, see also posterior estimates of all the regression parameters in Table A1 in 286 
Online Resource 2). In the three scenarios, populations inhabiting large patches with a small per capita growth 287 
rate in landscapes with low habitat availability tended to take longer to recover than patches with average 288 
characteristics (negative relationship between the latter two covariates and the time to recovery; Fig. 2). On the 289 
other hand, populations in patches with a small probability of dispersal, near other patches, and subject to less 290 
control pressure recovered faster than patches with average characteristics (positive relationships; Fig. 2). 291 

Despite the similarities in our results across scenarios, strong Allee effects influence times to recovery 292 
differently compared to the other two simulated population dynamics. Whenever there were strong Allee effects, 293 
our Bayesian regularised regressions revealed the positive effects of two covariates that did not show important 294 
effects in the other two scenarios: landscape connectance and patch carrying capacity (Fig. 2). These relationships 295 
indicate that patches in more connected landscapes and with a small carrying capacity recover slowly compared 296 
to other habitat patches in situations where there were strong Allee effects. 297 

 298 

Discussion 299 

Our simulation modelling revealed that invasive possum populations recovered relatively fast after 300 
moderate population control across the landscape (95% CIs ranging from 1 to 9 years after control across 301 
scenarios). However, populations experiencing Allee effects were less likely to recover, and those recovering took 302 
longer to achieve previous abundance levels than in the logistic growth model scenario. This key result highlights 303 
the need for a serious commitment to providing sufficient resources over the long term to control populations 304 
timely and regularly to obtain benefits from possum control before the populations reach the density threshold. 305 
Otherwise, irregular population control, or control after the time of recovery, will likely produce suboptimal 306 
outcomes in possum management. 307 

The effective control of invasive species, including possums, is commonly deemed challenging due to 308 
the idiosyncrasies of each landscape (Anderson et al. 2017; Baker 2017; Kopf et al. 2017; Glen et al. 2017), but 309 
our findings suggest that this is not always the case. Across the three types of population dynamics, our simulations 310 
indicate that the times to population recovery tended to be shaped by the same factors. At a landscape level, our 311 
results show that simple landscapes, characterised by a high availability of habitat, hosting high population 312 
densities and with a small distance between patches of suitable habitat, will require frequent control efforts to 313 
maintain possums below the desired density threshold. The other side of this coin implies that complex patchy 314 
landscapes, those characterised by the presence of suitable habitat patches scattered across the landscape, will be 315 
more amenable to long-term possum control and may require less frequent interventions. At a patch level, our 316 
simulations show that populations in smaller patches were less resilient to control than those in larger patches. In 317 
the case of the existence of strong Allee effects, two additional covariates need to be considered: landscape 318 
connectance and patch carrying capacity (Fig. 2). High connectance resulted in slower population recovery times, 319 
whereas patches with smaller carrying capacities required less time to recover. These effects emerged from low 320 
dispersal rates implying that possums remained in their patch until it reached its carrying capacity and, therefore, 321 
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leading to faster population recovery. In summary, our results show that the control of invasive possums in simple 322 
landscapes will benefit from taking a landscape-level perspective (e.g., maximising control efforts across the 323 
whole landscape), whereas control operations in complex landscapes will be better off by taking a more nuanced 324 
patch-level view (e.g., tackling each habitat patch as an independent management unit). 325 

Our research has direct implications for the ongoing landscape control of invasive possums in New 326 
Zealand (Montague 2000; Anderson et al. 2015; Livingstone et al. 2015; Gormley et al. 2016). The current 327 
management strategy consists in conducting control campaigns covering the whole landscape, which are repeated 328 
every five years for a decade or 15 years depending on the possum density and the likelihood of bovine 329 
tuberculosis persistence (Nugent et al. 2015; Gormley et al. 2016). Our results suggest that this general strategy 330 
could be fine-tuned to the peculiarities of each landscape. Simple landscapes with an abundance of possum habitat 331 
may need to be controlled more frequently than the current five-year interval to prevent rebounding possum 332 
numbers. This finding is in agreement with the recent observation that populations of invasive brustail possum in 333 
New Zealand that have been subject to control, show up to a 75% reduction in abundance within seven years after 334 
control, when compared with non-controlled populations (Forsyth et al. 2018). Alternately, the control of complex 335 
landscapes could incorporate fewer operations in small and relatively isolated patches. These general 336 
recommendations can be easily embedded within existing cost-benefit frameworks used to guide possum control 337 
operations in New Zealand (Gormley et al. 2016, 2017). 338 

Our findings broadly concur with the expectations drawn from metapopulation theory and population 339 
ecology (Hanski 1998; Courchamp et al. 2008). In particular, our findings agree with previous research showing 340 
that landscapes with a high habitat availability, frequently characterised by relatively large patches and small 341 
inter-patch distances (producing a high connectivity), tend to host stable and growing populations across a range 342 
of species (Hanski 1998; With 2002; Glen et al. 2013; Baker 2017; Fahrig 2017). In our simulations for the 343 
possum, populations tended to recover rapidly, showing higher resilience, in landscapes with those features 344 
promoting population and metapopulation stability. The potential to exploit naturally occurring Allee effects to 345 
manage invasive species has been recognised previously (Taylor and Hastings 2005; Courchamp et al. 2008; 346 
Wilkins et al. 2018), and our results provide additional evidence indicating that strong Allee effects undermine 347 
the ability of populations to recover after control. The consistent finding of the role of Allee effects in invasions 348 
warrants further research into potential ways to effectively exploit them in management applications. 349 

The landscape management of invasive species is becoming more common worldwide, and it is expected 350 
to continue growing in the nearby future thanks to ambitious initiatives with either a global, such as the IUCN’s 351 
Honolulu Challenge on Invasive Alien Species (https://www.iucn.org/theme/species/our-work/invasive-352 
species/honolulu-challenge-invasive-alien-species), or a regional scope (e.g., Predator Free New Zealand 2050) 353 
(Russell et al. 2015). In this work, we have demonstrated how a quantitative ecological model leads to important 354 
insights into the management of invasive species: complex and simple landscapes should be approached 355 
differently, with invasive species management in the latter type likely benefiting from allocating control efforts 356 
to habitat patches according to their size and connectivity (Chadès et al. 2011). Additionally, our modelling 357 
exercise provides lessons that can be used as a basis for future research and to reduce uncertainties in the landscape 358 
management of invasive species, acting as a way of prioritising the characteristics of the landscape and populations 359 
that deserve additional research consideration during the planning and early implementation of population control 360 
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(Conroy and Peterson 2013; Dietze 2017; Dietze et al. 2018). More broadly, the corroboration of most of our 361 
conclusions with the principles of population and metapopulation theory demonstrates the potential of ecological 362 
theory to inform invasive species management, echoing previous calls for a better integration of invasion ecology 363 
and management with other ecological disciplines (Driscoll and Lindenmayer 2012; Vaz et al. 2017). 364 
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