65 research outputs found

    Scale-free static and dynamical correlations in melts of monodisperse and Flory-distributed homopolymers: A review of recent bond-fluctuation model studies

    Full text link
    It has been assumed until very recently that all long-range correlations are screened in three-dimensional melts of linear homopolymers on distances beyond the correlation length ξ\xi characterizing the decay of the density fluctuations. Summarizing simulation results obtained by means of a variant of the bond-fluctuation model with finite monomer excluded volume interactions and topology violating local and global Monte Carlo moves, we show that due to an interplay of the chain connectivity and the incompressibility constraint, both static and dynamical correlations arise on distances rξr \gg \xi. These correlations are scale-free and, surprisingly, do not depend explicitly on the compressibility of the solution. Both monodisperse and (essentially) Flory-distributed equilibrium polymers are considered.Comment: 60 pages, 49 figure

    Classical Density Functional Study on Interfacial Structure and Differential Capacitance of Ionic Liquids near Charged Surfaces

    Get PDF
    We have implemented a generic coarse-grained model for the aromatic ionic liquid [CnMIM+][Tf2N-]. Various lengths for the alkyl chain on the cation define a homologous series, whose electric properties are expected to vary in a systematic way. Within the framework of a classical density functional theory, the interfacial structures of members of this series are compared over a range of surface charge densities, alkyl chain lengths, and surface geometries. The differential capacitance of the electric double layer, formed by ionic liquids against a charged electrode, is calculated as a function of the surface electric potential. A comparison of planar, cylindrical, and spherical surfaces confirms that the differential capacitance increases and varies less with surface potential as the surface curvature increases. Our results are in qualitative agreement with recent atomistic simulations

    Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution

    Get PDF
    Although the understanding of the influence of ionic liquids (ILs) on the solubility behavior of biomolecules in aqueous solutions is relevant for the design and optimization of novel biotechnological processes, the underlying molecular-level mechanisms are not yet consensual or clearly elucidated. In order to contribute to the understanding of the molecular interactions established between amino acids and ILs in aqueous media, classical molecular dynamics (MD) simulations were performed for aqueous solutions of five amino acids with different structural characteristics (glycine, alanine, valine, isoleucine, and glutamic acid) in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonyl imide. The results from MD simulations enable to relate the properties of the amino acids, namely their hydrophobicity, to the type and strength of their interactions with ILs in aqueous solutions and provide an explanation for the direction and magnitude of the solubility phenomena observed in [IL + amino acid + water] systems by a mechanism governed by a balance between competitive interactions of the IL cation, IL anion, and water with the amino acids

    Multiscale Molecular Simulations of Polymer-Matrix Nanocomposites

    Get PDF

    Presumptive identification of an emerging yeast pathogen: Candida dubliniensis (sp. nov.) reduces 2,3,5-triphenyltetrazolium chloride

    No full text
    Developments in medical intervention and the increasing population of patients with immunodeficiencies and transient or long-term immunosuppression have increased the list of yeast species that can cause disease. Candida dubliniensis is a novel species with close genetic relatedness to C. albicans. The two species share many common physiological and biochemical properties thus making their distinction cumbrous. A rapid and inexpensive way to presumptively differentiate between the two species-having previously performed a germ tube test, is the ability of C. dubliniensis to reduce the tetrazolium salt and it is reported for the first time, Microbiological information about new and emerging yeast pathogens, including rapid means for their identification, equips medical microbiologists with the means to identify and physicians to treat effectively infections attributed to unusual yeasts. (C) 1998 Federation of European Microbiological Societies. Published by Elsevier Science B.V

    STAT3 and STAT5 Targeting for Simultaneous Management of Melanoma and Autoimmune Diseases

    No full text
    Melanoma is a skin cancer which can become metastatic, drug-refractory, and lethal if managed late or inappropriately. An increasing number of melanoma patients exhibits autoimmune diseases, either as pre-existing conditions or as sequelae of immune-based anti-melanoma therapies, which complicate patient management and raise the need for more personalized treatments. STAT3 and/or STAT5 cascades are commonly activated during melanoma progression and mediate the metastatic effects of key oncogenic factors. Deactivation of these cascades enhances antitumor-immune responses, is efficient against metastatic melanoma in the preclinical setting and emerges as a promising targeting strategy, especially for patients resistant to immunotherapies. In the light of the recent realization that cancer and autoimmune diseases share common mechanisms of immune dysregulation, we suggest that the systemic delivery of STAT3 or STAT5 inhibitors could simultaneously target both, melanoma and associated autoimmune diseases, thereby decreasing the overall disease burden and improving quality of life of this patient subpopulation. Herein, we review the recent advances of STAT3 and STAT5 targeting in melanoma, explore which autoimmune diseases are causatively linked to STAT3 and/or STAT5 signaling, and propose that these patients may particularly benefit from treatment with STAT3/STAT5 inhibitors
    corecore