12 research outputs found

    Experimental infection of sheep with ovine and bovine Dichelobacter nodosus isolates

    Get PDF
    AbstractThe aim of this study was, under experimental conditions, to investigate infection of Norwegian White sheep with ovine and bovine isolates of Dichelobacter nodosus of varying virulence. In addition, the efficacy of gamithromycin as a treatment for the experimentally induced infections was examined. The study was performed as a single foot inoculation using a boot. Four groups, each with six lambs, were inoculated with four different challenge strains (Group 1: benign bovine strain; Group 2: virulent bovine strain; Group 3: benign ovine strain; Group 4: virulent ovine strain). The main criterion to determine that infection was transferred was that D. nodosus isolate was obtained by culture. After the trial all lambs were treated with gamithromycin. Clinical symptoms of footrot developed in all groups, and when removing the boots two weeks after challenge, D. nodosus was isolated from 5 of 24 experimental lambs. All lambs tested negative for D. nodosus by PCR within six weeks after treatment with gamithromycin. This study strongly indicates that D. nodosus isolates from both sheep and cattle can be transferred to sheep under experimental conditions. The study also indicates that gamithromycin may be effective against D. nodosus

    Interdigital dermatitis, heel horn erosion, and digital dermatitis in 14 Norwegian dairy herds

    Get PDF
    AbstractThe aim of this study was to assess infectious foot diseases, including identification and characterization of Dichelobacter nodosus and Treponema spp., in herds having problems with interdigital dermatitis (ID) and heel horn erosion (E) and in control herds expected to have few problems. We also wanted to compare diseased and healthy cows in all herds. The study included 14 dairy herds with a total of 633 cows. Eight herds had a history of ID and E, and 6 were control herds. All cows were scored for lameness, and infectious foot diseases on the hind feet were recorded after trimming. Swabs and biopsies were taken from the skin of 10 cows in each herd for bacterial analyses. In total, samples were taken from 34 cows with ID, 11 with E, 40 with both ID and E, and 8 with digital dermatitis (DD), and from 47 cows with healthy feet. Swabs were analyzed for identification and characterization of D. nodosus by PCR, culture, virulence testing, and serotyping. Biopsies were analyzed by fluorescent in situ hybridization regarding histopathology, identification, and characterization of Treponema spp., and identification of D. nodosus. Interdigital dermatitis was the most frequent foot disease, with a prevalence of 50.4% in problem herds compared with 26.8% in control herds. Heel horn erosion was recorded in 34.8% of the cows in problem herds compared with 22.1% in control herds. Dichelobacter nodosus was detected in 97.1% of the cows with ID, in 36.4% with E, in all cows with both ID and E, in all cows with DD, and in 66.0% of cows with healthy feet. All serogroups of D. nodosus except F and M were detected, and all isolates were defined as benign by the gelatin gel test. Treponema spp. were detected in 50.0% of the cows with ID, in 9.1% with E, in 67.5% with ID and E, in all cows with DD, and in 6.4% of those with healthy feet. In total, 6 previously described phylotypes (PT) of Treponema were detected: PT1, PT3, PT6, PT13, and PT15 in cows with ID, PT1 in a cow with E, and PT1, PT2, PT3, PT6, and PT13 in cows with both ID and E. One new phylotype (PT19) was identified. The epidermal damage score was higher but the difference in inflammatory response of the dermis was minor in cows with ID versus those with healthy feet. Fisher’s exact test revealed an association between ID and D. nodosus, and between ID and Treponema spp. Logistic regression revealed an association between both ID and E and dirty claws (odds ratios=1.9 and 2.0, respectively). Our study indicates that D. nodosus, Treponema spp., and hygiene are involved in the pathogenesis of ID

    Use of Extended Characteristics of Locomotion and Feeding Behavior for Automated Identification of Lame Dairy Cows.

    Get PDF
    This study was carried out to detect differences in locomotion and feeding behavior in lame (group L; n = 41; gait score ≥ 2.5) and non-lame (group C; n = 12; gait score ≤ 2) multiparous Holstein cows in a cross-sectional study design. A model for automatic lameness detection was created, using data from accelerometers attached to the hind limbs and noseband sensors attached to the head. Each cow's gait was videotaped and scored on a 5-point scale before and after a period of 3 consecutive days of behavioral data recording. The mean value of 3 independent experienced observers was taken as a definite gait score and considered to be the gold standard. For statistical analysis, data from the noseband sensor and one of two accelerometers per cow (randomly selected) of 2 out of 3 randomly selected days was used. For comparison between group L and group C, the T-test, the Aspin-Welch Test and the Wilcoxon Test were used. The sensitivity and specificity for lameness detection was determined with logistic regression and ROC-analysis. Group L compared to group C had significantly lower eating and ruminating time, fewer eating chews, ruminating chews and ruminating boluses, longer lying time and lying bout duration, lower standing time, fewer standing and walking bouts, fewer, slower and shorter strides and a lower walking speed. The model considering the number of standing bouts and walking speed was the best predictor of cows being lame with a sensitivity of 90.2% and specificity of 91.7%. Sensitivity and specificity of the lameness detection model were considered to be very high, even without the use of halter data. It was concluded that under the conditions of the study farm, accelerometer data were suitable for accurately distinguishing between lame and non-lame dairy cows, even in cases of slight lameness with a gait score of 2.5
    corecore