159 research outputs found
Force, orientation and position control in redundant manipulators in prioritized scheme with null space compliance
This paper addresses the problem of executing multiple prioritized tasks for robot manipulators with compliant behavior in the remaining null space. A novel controller–observer is proposed to ensure accurate accomplishment of various tasks based on a predefined hierarchy using a new priority assignment approach. Force control, position control and orientation control are considered. Moreover, a compliant behavior is imposed in the null space to handle physical interaction without using joint torque measurements. Asymptotic stability of the task space error and external torque estimation error during executing multiple tasks are shown. The performance of the proposed approach is evaluated on a 7R light weight robot arm by several case studies
Improved vision based pose estimation for industrial robots via sparse regression
In this work amonocular machine vision based pose estimation system is developed for industrial robots and the accuracy of the estimated pose is im-proved via sparse regression. The proposed sparse regressionbased methodis usedimprove the accuracy obtained from the Levenberg-Marquardt (LM) based pose estimation algorithmduring the trajectory tracking of an industrial robot’s end effector. The proposed method utilizes a set of basis functions to sparsely identify the nonlinear relationship between the estimated pose and the true pose provided by a laser tracker.Moreover,a camera target was designed and fitted with fiducial markers,andto prevent ambiguities in pose estimation, the markers are placed in such a way to guarantee the detection of at least two distinct nonparallel markers from a single camera within ± 90° in all directions of the cam-era’s view. The effectiveness of the proposed method is validated by an experi-mental study performed using a KUKA KR240 R2900 ultra robot while follow-ing sixteen distinct trajectories based on ISO 9238. The obtained results show that the proposed method provides parsimonious models which improve the pose estimation accuracy and precision of the vision based system during trajectory tracking of industrial robots' end effector
Clinical characteristics of outpatients and inpatients with COVID-19 in Bushehr: A report from the south of Iran
Aim: To investigate clinical, laboratory and imaging features of COVID-19 patients in Bushehr, a southern province of Iran. Materials & methods: A total of 148 COVID-19 patients were enrolled. The patients were categorized into four groups including inpatients, outpatients, elderly and nonelderly. Clinical, laboratory and computed tomography characteristics were analyzed and compared. Results: Levels of erythrocyte sedimentation rate, CRP, lactate dehydrogenase and aspartate aminotransferas among inpatients were higher than outpatients. There were significant differences in the levels of creatinine and blood urine nitrogen between elderly and nonelderly patients. The incidence of ground-glass opacities in inpatients was significantly higher than in outpatients. Conclusion: COVID-19 is associated with more severe renal failure in elderly patients. Elderly patients with underlying conditions are at increased risk of severe progression of COVID-19
Treatment Response of Cystic Echinococcosis to Benzimidazoles: A Systematic Review
Over the past 30 years, benzimidazoles have increasingly been used to treat cystic echinococcosis (CE). The efficacy of benzimidazoles, however, remains unclear. We systematically searched MEDLINE, EMBASE, SIGLE, and CCTR to identify studies on benzimidazole treatment outcome. A large heterogeneity of methods in 23 reports precluded a meta-analysis of published results. Specialist centres were contacted to provide individual patient data. We conducted survival analyses for cyst response defined as inactive (CE4 or CE5 by the ultrasound-based World Health Organisation [WHO] classification scheme) or as disappeared. We collected data from 711 treated patients with 1,308 cysts from six centres (five countries). Analysis was restricted to 1,159 liver and peritoneal cysts. Overall, 1–2 y after initiation of benzimidazole treatment 50%–75% of active C1 cysts were classified as inactive/disappeared compared to 30%–55% of CE2 and CE3 cysts. Further in analyzing the rate of inactivation/disappearance with regard to cyst size, 50%–60% of cysts <6 cm responded to treatment after 1–2 y compared to 25%–50% of cysts >6 cm. However, 25% of cysts reverted to active status within 1.5 to 2 y after having initially responded and multiple relapses were observed; after the second and third treatment 60% of cysts relapsed within 2 y. We estimated that 2 y after treatment initiation 40% of cysts are still active or become active again. The overall efficacy of benzimidazoles has been overstated in the past. There is an urgent need for a pragmatic randomised controlled trial that compares standardized benzimidazole therapy on responsive cyst stages with the other treatment modalities
Revolutionizing heat recovery in shell-and-tube latent heat storage systems: an arc-shaped fin approach
Strengthening the thermal response of Phase-Change Materials (PCMs) is an essential and active field of research with promising potential for advanced applications such as solar energy storage, building energy conservation, and thermal management in electronic devices. This article evaluates the efficacy of a new arc-shaped fin array in shell-and-tube heat storage systems to enhance the PCM response during the discharge mode. Different fin geometric parameters including the fin curvature angle, the fin spacing, and the nonuniform angle between fins in the top and bottom sections of the PCM domain were considered to identify the best-performing layout. The analysis shows that increasing the curvature of arc-shaped fins between 60° and 180° and increasing the fin spacing between 5 and 15 mm can significantly reduce solidifying time and improve heat recovery rates. Moreover, the arc-shaped fins are more efficient than conventional longitudinal (+-shaped) fins, which are commonly employed in thermal energy storage applications. Arc-shaped fins can also save discharge time by more than half and improve the rate of heat recovery by almost four times than that of + -shaped fins. The present findings suggest that arc-shaped fins represent a promising design for enhancing the heat-recovery aspects in PCM-based energy storage systems
Identification of the haemodynamic environment permissive for plaque erosion
Endothelial erosion of atherosclerotic plaques is the underlying cause of approximately 30% of acute coronary syndromes (ACS). As the vascular endothelium is profoundly affected by the haemodynamic environment to which it is exposed, we employed computational fluid dynamic (CFD) analysis of the luminal geometry from 17 patients with optical coherence tomography (OCT)-defined plaque erosion, to determine the flow environment permissive for plaque erosion. Our results demonstrate that 15 of the 17 cases analysed occurred on stenotic plaques with median 31% diameter stenosis (interquartile range 28–52%), where all but one of the adherent thrombi located proximal to, or within the region of maximum stenosis. Consequently, all flow metrics related to elevated flow were significantly increased (time averaged wall shear stress, maximum wall shear stress, time averaged wall shear stress gradient) with a reduction in relative residence time, compared to a non-diseased reference segment. We also identified two cases that did not exhibit an elevation of flow, but occurred in a region exposed to elevated oscillatory flow. Our study demonstrates that the majority of OCT-defined erosions occur where the endothelium is exposed to elevated flow, a haemodynamic environment known to evoke a distinctive phenotypic response in endothelial cells
Nanoscale aluminum plasmonic waveguide with monolithically integrated germanium detector
Surface plasmon polaritons have rapidly established themselves as a promising concept for molecular sensing, near-field nanoimaging, and transmission lines for emerging integrated ultracompact photonic circuits. In this letter, we demonstrate a highly compact surface plasmon polariton detector based on an axial metal-semiconductor-metal nanowire heterostructure device. Here, an in-coupled surface plasmon polariton propagates along an aluminum nanowire waveguide joined to a high index germanium segment, which effectively acts as a photoconductor at low bias. Based on this system, we experimentally verify surface plasmon propagation along monocrystalline Al nanowires as thin as 40 nm in diameters. Furthermore, the monolithic integration of plasmon generation, guiding, and detection enables us to examine the bending losses of kinked waveguides. These systematic investigations of ultrathin monocrystalline Al nanowires represent a general platform for the evaluation of nanoscale metal based waveguides for transmission lines of next generation high-speed ultracompact on-chip photonic circuits
Effect of COVID-19 medications on corrected QT interval and induction of torsade de pointes: Results of a multicenter national survey
Background: There are some data showing that repurposed drugs used for the Coronavirus disease-19 (COVID-19) have potential to increase the risk of QTc prolongation and torsade de pointes (TdP), and these arrhythmic side effects have not been adequately addressed in COVID-19 patients treated with these repurposed medications. Methods: This is the prospective study of 2403 patients hospitalised at 13 hospitals within the COVID-19 epicentres of the Iran. These patients were treated with chloroquine, hydroxychloroquine, lopinavir/ritonavir, atazanavir/ritonavir, oseltamivir, favipiravir and remdesivir alone or in combination with azithromycin. The primary outcome of the study was incidence of critical QTc prolongation, and secondary outcomes were incidences of TdP and death. Results: Of the 2403 patients, 2365 met inclusion criteria. The primary outcome of QTc � 500 ms and �QTc � 60 ms was observed in 11.2 and 17.6 of the patients, respectively. The secondary outcomes of TdP and death were reported in 0.38 and 9.8 of the patients, respectively. The risk of critical QT prolongation increased in the presence of female gender, history of heart failure, treatment with hydroxychloroquine, azithromycin combination therapy, simultaneous furosemide or beta-blocker therapy and acute renal or hepatic dysfunction. However, the risk of TdP was predicted by treatment with lopinavir-ritonavir, simultaneous amiodarone or furosemide administration and hypokalaemia during treatment. Conclusion: This cohort showed significant QTc prolongation with all COVID-19 medications studied, however, life-threatening arrhythmia of TdP occurred rarely. Among the repurposed drugs studied, hydroxychloroquine or lopinavir-ritonavir alone or in combination with azithromycin clearly demonstrated to increase the risk of critical QT prolongation and/or TdP. © 2021 John Wiley & Sons Ltd
Nanosizing techniques for improving bioavailability of drugs
The poor solubility of significant number of Active Pharmaceutical Ingredients (APIs) has become a major challenge in the drug development process. Drugs with poor solubility are difficult to formulate by conventional methods and often show poor bioavailability. In the last decade, attention has been focused on developing nanocrystals for poorly water soluble drugs using nanosizing techniques. Nanosizing is a pharmaceutical process that changes the size of a drug to the sub-micron range in an attempt to increase its surface area and consequently its dissolution rate and bioavailability. The effectiveness of nanocrystal drugs is evidenced by the fact that six FDA approved nanocrystal drugs are already on the market. The bioavailabilities of these preparations have been significantly improved compared to their conventional dosage forms. There are two main approaches for preparation of drug nanocrystals; these are the top-down and bottom-up techniques. Top-down techniques have been successfully used in both lab scale and commercial scale manufacture. Bottom-up approaches have not yet been used at a commercial level, however, these techniques have been found to produce narrow sized distribution nanocrystals using simple methods. Bottom-up techniques have been also used in combination with top-down processes to produce drug nanoparticles. The main aim of this review article is to discuss the various methods for nanosizing drugs to improve their bioavailabilities
- …