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ABSTRACT

Surface plasmon polaritons have rapidly established themselves as a promising concept for molecular sensing, near-field nanoimaging, and
transmission lines for emerging integrated ultracompact photonic circuits. In this letter, we demonstrate a highly compact surface plasmon
polariton detector based on an axial metal-semiconductor-metal nanowire heterostructure device. Here, an in-coupled surface plasmon
polariton propagates along an aluminum nanowire waveguide joined to a high index germanium segment, which effectively acts as a photo-
conductor at low bias. Based on this system, we experimentally verify surface plasmon propagation along monocrystalline Al nanowires as
thin as 40 nm in diameters. Furthermore, the monolithic integration of plasmon generation, guiding, and detection enables us to examine the
bending losses of kinked waveguides. These systematic investigations of ultrathin monocrystalline Al nanowires represent a general platform
for the evaluation of nanoscale metal based waveguides for transmission lines of next generation high-speed ultracompact on-chip photonic
circuits.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5115342

The ever-increasing demand for more-compact and thus cost-
effective chemical sensing solutions anticipates a roadmap leading to a
monolithic integration of optical components and functionalities into
ultracompact integrated photonic circuits.1–7 Consequently, addressing
demands with respect to operation speeds, efficiencies, and critical fea-
ture sizes rivaling electronics has triggered intense research interest in
photonic components scaled beyond the diffraction limit of light.5 In
this context, surface plasmon polaritons (SPPs), collective oscillations of
electrons at metal-dielectric interfaces, constitute a promising concept,
capable of concentrating and routing optical signals using subwave-
length structures.8,9 Networks of kinked and branched nanowires
(NWs) enable redirection of SPPs within a photonic circuit and thus
support compact interferometric routing and logic operations.10–12

With respect to the waveguide material, unlike commonly used metals

for studying plasmonic effects such as Ag and Au, Al features unique
material properties, enabling strong plasmon resonances ranging from
the visible into ultraviolet.13,14 Thus, its natural abundance, chemical
stability, low cost, and amenability to manufacturing processes and
CMOS compatibility make Al a promising candidate for scalable plas-
monic applications.13,15 However, propagation losses, radiation from
leaky plasmonmodes, and scattering by surface roughness are inevitable
in realistic nanostructures.16 Hence, the geometry, structural size, and
crystallinity of a NW waveguide are of crucial importance for plasmon
propagation lengths.17 Direct imaging of SPP propagation along NWs is
commonly accomplished by scanning near-field optical microscopy,17,18

limited to the spatial resolution of this optical method.10 Thus, in order
to investigate the expected short propagation length of SPPs in ultrathin
metallic NWs,10,19 we explored a near-field plasmon electrical detection
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scheme,20 based on an axial metal-semiconductor-metal (M-S-M) NW
heterostructure device architecture.

The Al-Ge-Al NW heterostructures were synthetized on 40nm
thick Si3N4 TEM-membranes21 by a thermally induced exchange reac-
tion of single-crystalline Ge NWs covered by a passivating Al2O3 shell
and lithographically defined Al contact pads [see Fig. 1(a) and the
SEM image in the inset]. The NW growth and heterostructure device
formation mechanism is discussed in the supplementary material and
in detail in the former works of Kral et al.22 and El Hajraoui et al.23

The single crystalline Al NW plasmonic waveguide and the Ge
NW segment acting as an electronic plasmon detector are connected
via an abrupt metal-semiconductor interface [see Fig. 1(b) and the
supplementary material]. An efficient launching of SPPs along the Al
NW is difficult to achieve due to the inherent size mismatch between
the photonic and plasmonic modes. Here, plasmon excitation by
phase-matching24,25 of the k¼ 532nm laser light to SPPs was achieved
by an on-chip design of a focused diffraction grating coupler
(FGC)26,27 patterned in the Si3N4-TEM-membrane atop of the litho-
graphically defined Al contacts using focused ion beam nanomachin-
ing [see Fig. 1(c)]. Unlike regular gratings supporting flat wave-fronts,
an FGC generates converging wave-fronts, enabling improved
coupling into the narrow NW waveguide.28 The overall working prin-
ciple is as follows: SPPs generated by the FGC patterned atop of the Al
contact pads are guided along the c-Al NW plasmon waveguide acting
also as an electrical contact of the Ge sensing element. At the Al-Ge
interface, SPPs decay and generate excited carriers29 in the adjacent Ge
segment.20 By applying a bias voltage (VBias) as shown in Fig. 1(a),
these charge carriers induce a current proportional to the SPP inten-
sity, enabling the detection of the plasmon signals by direct electric
means. The length of the c-Al waveguide (Lc-Al) as well as the Ge
segment (LGe) can be tuned by the contact gap (L) [see the SEM image
in the inset of Fig. 1(a)] and the processing parameters, i.e., duration
and temperature of the thermally induced exchange reaction. As

shown in the supplementary material, the length of the c-Al section of
a NW can be adjusted by successive annealing steps, enabling the
investigation of SPP propagation for one and the same device as a
function of the c-Al waveguide length.

To verify the working principle and the spectral responsivity of
the device, a tunable laser was focused on the FGC while simulta-
neously measuring the current through the biased device. The plot in
Fig. 2 shows the normalized current induced in the Ge segment by
plasmons generated by excitation of the FGC with a laser wavelength
between k¼ 480nm and 1100nm (see the inset of Fig. 2). As the FGC
was optimized for green laser light, a distinct maximum can be
observed at about k ¼ 532nm, as well as the second order peak
around k¼ 1064nm.

To clarify the local origin of the plasmon induced current, the
laser was scanned across the heterostructure device as indicated in the
top panel of Fig. 3(a). The lower panel shows the corresponding
current for the scanning laser being polarized perpendicular with
respect to the NW axis. A distinct current peak further denoted Iplas
appears when the laser matches the position of the FGC. SPPs gener-
ated at the FGC and effectively coupled into the c-Al NW generate
excited carriers in the adjacent Ge segment, resulting in a bias depen-
dent current.

Finite difference time domain (FDTD) simulations revealed that
incident light with a polarization perpendicular to the grating couples
best to the fundamental mode of the NW-membrane system, which is
predominately TM polarized, i.e., in the y-direction [see mode electric
field distributions in Fig. 3(b)]. The different plasmon mode contribu-
tions in the respective field polarization (x, y, z) are depicted in
Fig. 3(b). The second peak appears when the laser beam directly illu-
minates the electrically biased Ge segment forming electron-hole pairs,
resulting in a common photocurrent, denoted Ipc. Since there is no
FGC incorporated at the opposite Al contact, the signal at this position
equals the dark current.

FIG. 1. (a) Schematic illustration of the Al-Ge-Al NW heterostructure device archi-
tecture fabricated on a 40 nm thick Si3N4-membrane. The SEM image (the scale
bar is 1 lm) in the inset shows the Al-Ge-Al NW heterostructure connected to mac-
roscopic Al pads with a gap of about L¼ 2 lm. (b) HRTEM image showing
the atomically sharp and defect free Al-Ge heterojunction. The scale bar is 5 nm.
(c) SEM image showing the FGC patterned in the Si3N4-membrane atop of the
lithographically defined Al contacts. The scale bar is 1 lm.

FIG. 2. Spectral responsivity of the FGC excited by a tunable laser, operating in the
wavelength range between k ¼ 480 nm and 1100 nm, while simultaneously biasing
the device with VBias ¼ 100 mV. The diameter and length of the c-Al NW wave-
guide attached to the FGC were 40 nm and 700 nm, respectively. The measure-
ment was conducted at room temperature and ambient conditions, and the data
were corrected with respect to the wavelength dependent laser output power. The
SEM image in the inset shows the overall contact arrangement of the Al-Ge-Al NW
heterostructure device. The scale bar is 1 lm. The green spot indicates the laser
position for exciting the FGC by the tunable laser.

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 115, 161107 (2019); doi: 10.1063/1.5115342 115, 161107-2

Published under license by AIP Publishing

https://doi.org/10.1063/1.5115342#suppl
https://doi.org/10.1063/1.5115342#suppl
https://doi.org/10.1063/1.5115342#suppl
https://scitation.org/journal/apl


The FGC plasmon generator in combination with the extremely
sensitive near-field electrical Al-Ge-Al plasmon detector device allows
the propagation length of SPPs in ultrathin c-Al NW waveguides to be
measured with a high spatial resolution. Figure 4(a) shows the
plasmon induced currents for devices with various lengths of the c-Al
SPP waveguides (Lc-Al) between 450nm and 1085nm [see the inset of
Fig. 4(a)]. Assuming that Iplas is directly correlated with the SPP inten-
sity, a decrease in more than two orders of magnitude for an only
600nm long waveguide indicates extreme damping for such ultrathin
Al NWs. The exponential fit of the experimental data reveals a propa-
gation length of LSPP ¼ 140nm. Based on FDTD simulations, an
imaginary part of the effective refractive index of the fundamental
mode in the c-Al NW of I neff :ð Þ � 0:3 at k ¼ 532nm was extracted
from which a propagation length of LSPP;calc: ¼ k

4pI neff :ð Þ ¼ 141nm

could be calculated. In the simulation, an ultrathin Ge shell originating
from the fabrication process and surrounding the Al NW was
also taken into account, which is consistent with the TEM analysis
provided by El Hajraoui et al.23

Thus, although the investigated Al NWs are monocrystalline and
rodlike with a smooth surface,30 the confinement of SPPs in such
ultrathin NWs results in high propagation loss,16 limiting the trans-
mission length for on-chip communication even for straight NWs.
However, simulations show that a manifold enhancement of the SPP
propagation length can be achieved by tuning the NW diameter.31 For
our system, an increased Al NW diameter of 100nm would lead to a
propagation length of 470nm. Simulations showing the dependency
of the diameter of the c-Al NW waveguides on the SPP propagation
length are provided in the supplementary material. Future high-speed
ultracompact photonic components will require waveguide bends
capable of redirecting signals within a circuit with minimum footprint
and as little losses as possible.10,16 In order to investigate such broken
symmetry waveguides,10 kinked c-Al SPP waveguides with an overall
length of Lc-Al � 700nm exhibiting approximately zero radius of cur-
vature and inclination angles between a ¼ 0� and 90� were integrated
in the M-S-M devices. The inset in Fig. 4(b) shows an SEM image and
the FDTD simulation plot of an exemplarily device with a 90� inclined
c-Al plasmon waveguide. Additional SEM-images showing hetero-
structure devices with 35� and 55� inclined c-Al plasmon waveguides
are displayed in the supplementary material. The disturbance of SPP
propagation at the kink is clearly observable in the simulation plot.
Propagating SPPs are effectively scattered into radiating photons at the
kink, resulting in a drop of the transmitted power.16,32,33 By calculating
the electric fields at the end facet of the 700nm long c-Al NW, the
resultant bending losses were determined to be 33%, 89%, and 96% for
kink angles of a¼ 35�, 55�, and 90�, respectively.

Experimentally, due to the enhanced scattering at the kinks, less
plasmons pass the 700nm long c-Al NW on their way to the Al-Ge
interface. The plasmon induced current thus decreases with increasing
kinking angles. The measured bending losses shown in the main plot

FIG. 3. (a) The upper panel shows an SEM image of the contact arrangement of the Al-Ge-Al NW heterostructure device with the FGC patterned atop of the left lithographically
defined Al contact with superimposed grating and beam contours. The lower panel shows the respective line scan across the device starting from the FGC contact toward
the opposite contact measuring both the plasmon induced current and photocurrent for TM polarized laser excitation (VBias ¼ 100 mV). (b) FDTD simulations of the electric
field intensity for the jEyj2, jEzj2, and jExj2 field distributions of the fundamental mode in the NW-Si3N4 membrane system. The scale bar is 60 nm; the white arrows indicate
the predominant field polarization, and the white lines are the contours of the membrane.

FIG. 4. (a) Plasmon induced current as a function of the length Lc-Al of the c-Al
waveguide. The inset shows an SEM image of a heterostructure device with an
indicated length of the c-Al waveguide of Lc-Al ¼ 950 nm. The scale bar is 1 lm.
(b) Experimentally determined and calculated bending losses depending on the
kinking angle a for the M-S-M devices with an overall c-Al waveguide length of Lc-Al
� 700 nm. The left inset shows the SEM image of a device with a 90� kinked c-Al
plasmon waveguide. The scale bar is 200 nm. The right inset shows the respective
FDTD simulation plot. All measurements were conducted for VBias¼ 100mV,
EL ¼ 340 lW/lm2, and k ¼ 532 nm at room temperature and ambient conditions.
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of Fig. 4(b) are in reasonable agreement with the simulated values. The
shown data points correspond to the mean values over three devices
for each of the investigated kink-angles. This clearly demonstrates that
bending losses in ultrathin metal waveguides are a crucial factor for
the design of transmission lines within ultracompact photonic circuits.

In conclusion, we have demonstrated the effective coupling and
guiding of light over ultrathin c-Al NWs. To measure the plasmonic
propagation characteristics, we explored an extremely sensitive
near-field electrical plasmon detector based on an axial Al-Ge-Al NW
heterostructure. Plasmon excitation by phase-matching light to
SPPs was achieved by FGCs tuned for an excitation wavelength of k
¼ 532nm. Based on this system, we experimentally determined a prop-
agation length of LSPP¼ 140nm for the confined SPPs in monocrystal-
line 40nm thin Al NWs. Most notably, with respect to waveguide
bends required for on-chip routing of signals within photonic net-
works, we assessed the bending losses for kinked c-Al NWs. Thus, our
monolithic approach is an important step toward highly efficient plas-
mon sensing applications that eliminate the need for far-field detection.

See the supplementary material for Ge NW synthesis, device
fabrication, and electrical and optical device characterization; detailed
description of a HRTEM image recorded at the Al-Ge interface; dis-
cussion of the approach to control the length of the c-Al NWs and the
respective change of the plasmon induced currents by successive
thermal annealing; images of devices with 35�, 55�, and 90� inclined
c-Al plasmon waveguides; and simulations showing the dependency of
the diameter of the c-Al NW waveguides on the SPP propagation
length.
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