53 research outputs found

    Distributed Opportunistic Scheduling In Cellular Data Networks-To Prevent The Malicious Attack

    Get PDF
    Abstract-Third Generation (3G) cellular networks take advantage of time-varying and locationdependent channel conditions of mobile users to provide broadband services. Under fairness and QoS constraints, they use opportunistic scheduling to efficiently utilize the available spectrum. Opportunistic scheduling algorithms rely on the collaboration among all mobile users to achieve their design objectives. However, we demonstrate that rogue cellular devices can exploit vulnerabilities in popular opportunistic scheduling algorithms, such as Proportional Fair (PF) and Temporal Fair (TF), to usurp the majority of time slots in 3G networks. Our simulations show that under realistic conditions, only five rogue device per 50-user cell can capture up to 95 percent of the time slots, and can cause 2-second end-to-end inter packet transmission delay on VoIP applications for every user in the same cell, rendering VoIP applications useless. To defend against this attack, we propose strengthening the PF and TF schedulers and a robust handoff schem

    Evolution of catalyst coated atomised magnesium spheres: an alternative thermal storage medium for concentrated solar power applications

    Get PDF
    Elevated temperature cycling studies were performed on two commercial gas atomised Mg spherical powders (average diameter of 26 μm and 30 μm) with magnetron sputtered catalysts (chromium, iron, vanadium and stainless steel) applied to their surfaces. At 350 °C, the presence of a catalyst promotes faster reaction kinetics with improving capacity until approaching stabilisation by the 90th cycle, e.g. the normalised capacity of V_Mg30 was found to rise from 45.5% to 65.5%. Following determination of activation energies (from Kissinger plots) and microstructural analysis of the post cycled structures a mechanism was proposed for the differing evolutions of the uncoated and coated Mg powders based upon a complex process in which particle sintering competes with particle fragmentation. Catalyst effectiveness varied with temperature, having a negligible impact on hydrogen storage characteristics of the atomised Mg powders following 50 cycles at 400 °C and this was mainly associated with the lack of multivalency in the catalysts

    Stoichiometry and annealing condition on hydrogen capacity of TiCr2-x AB2 alloys

    Get PDF
    This study presents the effect of stoichiometry and annealing condition on Ti–Cr AB2-type hydrogen storage alloys. Prior to annealing the majority phase of the as-cast alloys was the C14 Laves phase, with separate Ti and Cr phases. Annealing treatment (1273 K/14 d) led to a transition from C14 to C15 Laves phase structure. Both C14 (as-cast) and C15 (annealed) cell size increased with Ti content, up to a ratio (Cr/Ti) of 1.6, due to B-site Ti substitution in the lattice up to a limit. Pressure composition isotherm (PCI) measurements demonstrated alloys containing a greater Ti content had a better maximum hydrogen storage capacity (1.5 vs. 1.03 wt%) and lower plateau pressure (9.4 vs. 15.8 bar) at 253 K. Annealing resulted in a lower storage capacity (1.05 vs. 1.49 wt%), greater plateau pressure (ca. 30 bar) and flatter plateau slope (25 % reduction in plateau slope). Reduction in hydrogen storage capacity of annealed alloys could be due to diffusion of residual Cr in the alloy into the C15 Laves phase during the annealing process, thereby changing the local composition as confirmed through X-ray diffraction (XRD)

    Efficient hydrogen storage in up-scale metal hydride tanks as possible metal hydride compression agents equipped with aluminium extended surfaces

    Get PDF
    In the current work, a three-dimensional computational study regarding coupled heat and mass transfer during both the hydrogenation and dehydrogenation process in upscale cylindrical metal hydride reactors is presented, analysed and optimized. Three different heat management scenarios were examined at the degree to which they provide improved system performance. The three scenarios were: 1) plain embedded cooling/heating tubes, 2) transverse finned tubes and 3) longitudinal finned tubes. A detailed optimization study was presented leading to the selection of the optimized geometries. In addition, two different types of hydrides, LaNi5 and an AB2-type intermetallic were studied as possible candidate materials for using as the first stage alloys in a two-stage metal hydride hydrogen compression system. As extracted from the above results, it is clear that the case of using a vessel equipped with 16 longitudinal finned tubes is the most efficient way to enhance the hydrogenation kinetics when using both LaNi5 and the AB2-alloy as the hydride agents. When using LaNi5 as the operating hydride the case of the vessel equipped with 60 embedded cooling tubes presents the same kinetic behaviour with the case of the vessel equipped with 12 longitudinal finned tubes, so in that way, by using extended surfaces to enhance the heat exchange can reduce the total number of tubes from 60 to 12. For the case of using the AB2-type material as the operating hydride the performance of the extended surfaces is more dominant and effective compared to the case of using the embedded tubes, especially for the case of the longitudinal extended surfaces

    Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives

    Get PDF
    Metal hydrides are known as a potential efficient, low-risk option for high-density hydrogen storage since the late 1970s. In this paper, the present status and the future perspectives of the use of metal hydrides for hydrogen storage are discussed. Since the early 1990s, interstitial metal hydrides are known as base materials for Ni – metal hydride rechargeable batteries. For hydrogen storage, metal hydride systems have been developed in the 2010s [1] for use in emergency or backup power units, i. e. for stationary applications. With the development and completion of the first submarines of the U212 A series by HDW (now Thyssen Krupp Marine Systems) in 2003 and its export class U214 in 2004, the use of metal hydrides for hydrogen storage in mobile applications has been established, with new application fields coming into focus. In the last decades, a huge number of new intermetallic and partially covalent hydrogen absorbing compounds has been identified and partly more, partly less extensively characterized. In addition, based on the thermodynamic properties of metal hydrides, this class of materials gives the opportunity to develop a new hydrogen compression technology. They allow the direct conversion from thermal energy into the compression of hydrogen gas without the need of any moving parts. Such compressors have been developed and are nowadays commercially available for pressures up to 200 bar. Metal hydride based compressors for higher pressures are under development. Moreover, storage systems consisting of the combination of metal hydrides and high-pressure vessels have been proposed as a realistic solution for on-board hydrogen storage on fuel cell vehicles. In the frame of the “Hydrogen Storage Systems for Mobile and Stationary Applications” Group in the International Energy Agency (IEA) Hydrogen Task 32 “Hydrogen-based energy storage”, different compounds have been and will be scaled-up in the near future and tested in the range of 500 g to several hundred kg for use in hydrogen storage applications.Fil: Bellosta von Colbe, Jose. Helmholtz-Zentrum Geesthacht; AlemaniaFil: Ares Fernández, José Ramón. Universidad Autónoma de Madrid; EspañaFil: Jussara, Barale. Università di Torino; ItaliaFil: Baricco, Marcello. Università di Torino; ItaliaFil: Buckley, Craig E.. Curtin University; AustraliaFil: Capurso, Giovanni. Helmholtz Zentrum Geesthacht; AlemaniaFil: Gallandat, Noris. GRZ Technologies Ltd; SuizaFil: Grant, David M.. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino Unido. University of Nottingham; Estados UnidosFil: Guzik, Matylda N.. University of Oslo; NoruegaFil: Jacob, Isaac. Ben Gurion University of the Negev; IsraelFil: Jensen, Emil H.. University of Oslo; NoruegaFil: Jensen, Torben. University Aarhus; DinamarcaFil: Jepsen, Julian. Helmholtz Zentrum Geesthacht; AlemaniaFil: Klassen, Thomas. Helmholtz Zentrum Geesthacht; AlemaniaFil: Lototskyy, Mykhaylol V.. University of Cape Town; SudáfricaFil: Manickam, Kandavel. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Montone, Amelia. Casaccia Research Centre; ItaliaFil: Puszkiel, Julián Atilio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Helmholtz Zentrum Geesthacht; AlemaniaFil: Sartori, Sabrina. University of Oslo; NoruegaFil: Sheppard, Drew A.. Curtin University; AustraliaFil: Stuart, Alastair. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Walker, Gavin. University of Nottingham; Estados Unidos. Science and Technology Facilities Council of Nottingham. Rutherford Appleton Laboratory; Reino UnidoFil: Webb, Colin J.. Griffith University; AustraliaFil: Yang, Heena. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Yartys, Volodymyr. Institute for Energy Technology; NoruegaFil: Züttel, Andreas. Empa Materials Science & Technology; Suiza. École Polytechnique Fédérale de Lausanne; SuizaFil: Dornheim, Martin. Helmholtz Zentrum Geesthacht; Alemani

    Molecular Effects of Doxycycline Treatment on Pterygium as Revealed by Massive Transcriptome Sequencing

    Get PDF
    Pterygium is a lesion of the eye surface which involves cell proliferation, migration, angiogenesis, fibrosis, and extracellular matrix remodelling. Surgery is the only approved method to treat this disorder, but high recurrence rates are common. Recently, it has been shown in a mouse model that treatment with doxycycline resulted in reduction of the pterygium lesions. Here we study the mechanism(s) of action by which doxycycline achieves these results, using massive sequencing techniques. Surgically removed pterygia from 10 consecutive patients were set in short term culture and exposed to 0 (control), 50, 200, and 500 µg/ml doxycycline for 24 h, their mRNA was purified, reverse transcribed and sequenced through Illumina’s massive sequencing protocols. Acquired data were subjected to quantile normalization and analyzed using cytoscape plugin software to explore the pathways involved. False discovery rate (FDR) methods were used to identify 332 genes which modified their expression in a dose-dependent manner upon exposure to doxycycline. The more represented cellular pathways included all mitochondrial genes, the endoplasmic reticulum stress response, integrins and extracellular matrix components, and growth factors. A high correlation was obtained when comparing ultrasequencing data with qRT-PCR and ELISA results

    Li+Li^{+} ion conductivities in boro-tellurite glasses

    No full text
    Lithium ion conductivity has been investigated in a boro-tellurite glass system, LiClLiBO2TeO2LiCl-LiBO_{2}TeO_{2}. In the absence of LiCl, the conductivity increases with increasing non-bridging oxygen (NBO)concentration. LiCl addition has little influence on total conductivity although the observed barriers are low. Formation of LiCl clusters appears evident. In the a.c. conductivity and dielectric studies, it is observed that the conductivity mechanism remains the same in all compositions and at all temperatures. A suggestion is made that Li+Li^{+} iontransport may be driven by bridging oxygen H non-bridging oxygen (BO <-> NBO) switching, which is why the two different types of Li+Li^{+} ions in the clusters and in the neighbourhood of NBOs, do not manifest in the conductivity studies

    Screening of wild plant species for antibacterial activity and phytochemical analysis of Tragia involucrata L.

    No full text
    Eight wild plant species namely Tragia involucrata L., Cleistanthus collinus (Roxb.)Benth. Ex Hook.f., Sphaeranthus indicus L., Vicoa indica (L.) Dc., Allmania nodiflora (L.) R.Br. ex wight., Habenaria elliptica Wight., Eriocaulon thwaitesii Koern. and Evolvulus alsinoides L. were used for phytochemical extraction with four different solvents. Antibacterial activity of these plants was studied against Escherichia coli NCIM 2065 using Kirby Bauer agar disc diffusion assay. Effective antibacterial activity was shown by T. involucrata acetone extract (27.3 mm), compared to standard medicinal drug amoxicillin (28.3 mm). Minimum inhibitory concentration (MIC) of T. involucrata extract was 15 mg/mL and hence, it could be pursued further for obtaining phytomedicine. Biochemical constituents of T. involucrata fresh leaf were: sugars (55 mg/g), starch (0.7182 mg/g), proteins (0.0166 mg/g) and lipids (170 mg/g). Alkaloids, tannins, phenolic compounds, flavonoids and steroids were also observed qualitatively. Keywords: Antibacterial activity, E. coli NCIM 2065, Tragia involucrate, Phytochemical analysi

    Li<SUP>+</SUP> ion conductivities in boro-tellurite glasses

    No full text
    Lithium ion conductivity has been investigated in a boro-tellurite glass system, LiCl·LiBO2·TeO2·. In the absence of LiCl, the conductivity increases with increasing non-bridging oxygen (NBO) concentration. LiCl addition has little influence on total conductivity although the observed barriers are low. Formation of LiCl clusters appears evident. In the a.c. conductivity and dielectric studies, it is observed that the conductivity mechanism remains the same in all compositions and at all temperatures. A suggestion is made that Li+ ion transport may be driven by bridging oxygen ↔ non-bridging oxygen (BO ↔ NBO) switching, which is why the two different types of Li+ ions in the clusters and in the neighbourhood of NBOs, do not manifest in the conductivity studies

    Reduction of hydrogen desorption temperature of ball-milled MgH2 by NbF5 addition

    No full text
    Enhanced sorption properties of ball-milled MgH2 are reported by adding NbF5. Among various catalyst amounts, 2 mol% of NbF5 reveals to be the optimum concentration leading to significant reduction of the desorption temperature as well as faster kinetics of ball-milled MgH2. At 200 °C, temperature at which MgH2 does not show any activity, Mg H2 Nb F5 / 2 mol % composite desorbs 3.2 wt.% of H2 in 50 mins. Interestingly, the addition of NbF5 is also associated with an increase in the desorption pressure. At 300 °C, Mg H2 Nb F5 / 2 mol % composite starts to desorb hydrogen at 600 mbar in comparison with 1 mbar for MgH2. Further improvements were successfully achieved by pre-grinding NbF5 prior to ball-milling the catalyst with MgH2. Such pre-ground NbF5 catalyzed MgH2 composite desorbs 3 wt.% of H2 at 150 °C. Improved properties are associated with smaller activation energies down to values close to the enthalpy of formation of MgH2. Finally, the mechanism at the origin of the enhancement is discussed in terms of catalyst stability, MgF2 formation and electronic density localization. © 2007 Elsevier B.V. All rights reserved
    corecore