234 research outputs found

    Performance Comparison in the "Follicular Neoplasm" Category Between the American, British, Italian, and Japanese Systems for Reporting Thyroid Cytopathology

    Get PDF
    It is now almost ten years that the United Stated of America, England, Italy and Japan had their own reporting system to classify thyroid lesions. Important confusion and uncertainties dominated the "follicular-patterned lesions", a category also known as the "gray zone". Every cytopathologist was using a personal terminology to describe and call lesions made up of a variable admixture of macro- and microfollicular structures. These personal views varied considerably between cytopathologists and generated a great deal of confusion among patients (the cytological report being almost incomprehensible to them), clinicians and even within the same cytopathology community. With the advent of national reporting systems, things changed in a better way and standardized reporting systems became the standard of practice in thyroid cytology. The outcome of the widespread use of standardized diagnostic categories was the reduction of descriptive diagnoses and the improved communication between pathologists, clinicians and patients. In this article we review the major reporting systems, analyze their similarities and differences in the "indeterminate" or "follicular-patterned" diagnostic categories, and when possible, try to assess their performance

    Study of parameters in focus simulation functions of virtual slide

    Get PDF
    As a special function of Virtual Slide (VS) for thick specimens like cytology slides, multilayer (Z-stack) simulated focus and focus fusion were introduced. From the standpoint of surgical pathologist, the optimum parameters for multilayer focus simulation were examined. First, minimal thickness of the layer was checked by measuring thickness of small cells counting the number of the layers that come into focus. Then the optimal number of layers to scan, total thickness, was tried. Small-sized cell nuclei showed around 2μm or less thickness. As minimal thickness of one layer for focus simulation, less than 2 μm is required. Papillary cell mass of urothelial carcinoma, aspiration cytology specimen of breast or thyroid, and uterine cervical smear showed different optimal thickness. Cells piling up more than 4 to 5 layer are difficult to make close up observation. Total 15 (to 30) μm thick scan was enough for most specimens. The “focus fusion” image is single layer image synthesized from multiple layer images. Several layer thicknesses were examined, and there was negligible difference between the focus fusion image synthesized from 0.25 and 1μm thick layers. In the focus fusion image synthesized from 3μm thick layers, some cells not to come into focus. The “focus fusion” seems to contain all the cells in one plane, and easy for screening. To emphasize the existence of myoepithelial cells in fibroadenoma of breast, or to clarify the 3-dimensional tissue structure, multilayer image was better. From our results, 10 layers with 1.5μm thick each provide sufficient information in most specimens

    Gauss's law and gauge-invariant operators and states in QCD

    Get PDF
    In this work, we prove a previously published conjecture that a prescription we gave for constructing states that implement Gauss's law for `pure glue' QCD is correct. We also construct a unitary transformation that extends this prescription so that it produces additional states that implement Gauss's law for QCD with quarks as well as gluons. Furthermore, we use the mathematical apparatus developed in the course of this work to construct gauge-invariant spinor (quark) and gauge (gluon) field operators. We adapt this SU(3) construction for the SU(2) Yang-Mills case, and we consider the dynamical implications of these developments.Comment: 29 pages, LaTeX, uses REVTe

    p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis.

    Get PDF
    The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents

    Elastic Stable Intramedullary Nailing (ESIN), Orthoss® and Gravitational Platelet Separation - System (GPS®): An effective method of treatment for pathologic fractures of bone cysts in children

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The different treatment strategies for bone cysts in children are often associated with persistence and high recurrence rates of the lesions. The safety and clinical outcomes of a combined mechanical and biological treatment with elastic intramedullary nailing, artificial bone substitute and autologous platelet rich plasma are evaluated.</p> <p>Methods</p> <p>From 02/07 to 01/09 we offered all children with bone cysts the treatment combination of elastic intramedullary nailing (ESIN), artificial bone substitute (Orthoss<sup>®</sup>) and autologous platelet rich plasma, concentrated by the Gravitational Platelet Separation (GPS<sup>®</sup>) - System. All patients were reviewed radiologically for one year following the removal of the intramedullary nailing, which was possible because of cyst obliteration.</p> <p>Results</p> <p>A cohort of 12 children (4 girls, 8 boys) was recruited. The mean patient age was 11.4 years (range 7-15 years). The bone defects (ten humeral, two femoral) included eight juvenile and four aneurysmal bone cysts. Five patients suffered from persistent cysts following earlier unsuccessful treatment of humeral bone cyst after pathologic fracture; the other seven presented with acute pathologic fractures. No peri- or postoperative complications occurred. The radiographic findings showed a total resolution of the cysts in ten cases (Capanna Grade 1); in two cases a small residual cyst remained (Capanna Grade 2). The intramedullary nails were removed six to twelve months (mean 7.7) after the operation; in one case, a fourteen year old boy (Capanna Grade 2), required a further application of GPS<sup>® </sup>and Orthoss<sup>® </sup>to reach a total resolution of the cyst. At follow-up (20-41 months, mean 31.8 months) all patients showed very good functional results and had returned to sporting activity. No refracture occurred, no further procedure was necessary.</p> <p>Conclusions</p> <p>The combination of elastic intramedullary nailing, artificial bone substitute and autologous platelet rich plasma (GPS<sup>®</sup>) enhances the treatment of bone cysts in children, with no resulting complications.</p

    Platelet lysate-based pro-angiogenic nanocoatings

    Get PDF
    Human platelet lysate (PL) is a cost-effective and human source of autologous multiple and potent pro-angiogenic factors, such as vascular endothelial growth factor A (VEGF A), fibroblast growth factor b (FGF b) and angiopoietin-1. Nanocoatings previously characterized were prepared by layer-by-layer assembling incorporating PL with marine-origin polysaccharides and were shown to activate human umbilical vein endothelial cells (HUVECs). Within 20 h of incubation, the more sulfated coatings induced the HUVECS to the form tube-like structures accompanied by an increased expression of angiogenicassociated genes, such as angiopoietin-1 and VEGF A. This may be a cost-effective approach to modify 2D/3D constructs to instruct angiogenic cells towards the formation of neo-vascularization, driven by multiple and synergistic stimulations from the PL combined with sulfated polysaccharides. Statement of Significance The presence, or fast induction, of a stable and mature vasculature inside 3D constructs is crucial for new tissue formation and its viability. This has been one of the major tissue engineering challenges, limiting the dimensions of efficient tissue constructs. Many approaches based on cells, growth factors, 3D bioprinting and channel incorporation have been proposed. Herein, we explored a versatile technique, layer-by-layer assembling in combination with platelet lysate (PL), that is a cost-effective source of many potent pro-angiogenic proteins and growth factors. Results suggest that the combination of PL with sulfated polyelectrolytes might be used to introduce interfaces onto 2D/3D constructs with potential to induce the formation of cell-based tubular structures.The research leading to these results has received funding from European Union's Seventh Framework Program (FP7/2007-2013) under grant agreement na REGPOT-CT2012-316331 - POLARIS and FP7-KBBE-2010-4-266033 - SPECIAL. This work was also supported by the European Research Council grant agreement ERC-2012-ADG-20120216-321266 for the project ComplexiTE. Portuguese Foundation for Science and Technology is gratefully acknowledged for fellowship of Sara M. Oliveira (SFRH/BD/70107/2010). The researcher contract of R.P. Pirraco through RL3-TECT-NORTE-01-0124-FEDER-000020, co-financed by North Portugal Regional Operational Program (ON.2-O Novo Norte), under the National Strategic Reference Framework, through the European Regional Development Fund is also acknowledged

    Human platelet lysate as a fetal bovine serum substitute improves human adipose-derived stromal cell culture for future cardiac repair applications

    Get PDF
    Adipose-derived stromal cells (ASC) are promising candidates for cell therapy, for example to treat myocardial infarction. Commonly, fetal bovine serum (FBS) is used in ASC culturing. However, FBS has several disadvantages. Its effects differ between batches and, when applied clinically, transmission of pathogens and antibody development against FBS are possible. In this study, we investigated whether FBS can be substituted by human platelet lysate (PL) in ASC culture, without affecting functional capacities particularly important for cardiac repair application of ASC. We found that PL-cultured ASC had a significant 3-fold increased proliferation rate and a significantly higher attachment to tissue culture plastic as well as to endothelial cells compared with FBS-cultured ASC. PL-cultured ASC remained a significant 25% smaller than FBS-cultured ASC. Both showed a comparable surface marker profile, with the exception of significantly higher levels of CD73, CD90, and CD166 on PL-cultured ASC. PL-cultured ASC showed a significantly higher migration rate compared with FBS-cultured ASC in a transwell assay. Finally, FBS- and PL-cultured ASC had a similar high capacity to differentiate towards cardiomyocytes. In conclusion, this study showed that culturing ASC is more favorable in PL-supplemented medium compared with FBS-supplemented medium
    corecore