60 research outputs found
Fully Automatic Expression-Invariant Face Correspondence
We consider the problem of computing accurate point-to-point correspondences
among a set of human face scans with varying expressions. Our fully automatic
approach does not require any manually placed markers on the scan. Instead, the
approach learns the locations of a set of landmarks present in a database and
uses this knowledge to automatically predict the locations of these landmarks
on a newly available scan. The predicted landmarks are then used to compute
point-to-point correspondences between a template model and the newly available
scan. To accurately fit the expression of the template to the expression of the
scan, we use as template a blendshape model. Our algorithm was tested on a
database of human faces of different ethnic groups with strongly varying
expressions. Experimental results show that the obtained point-to-point
correspondence is both highly accurate and consistent for most of the tested 3D
face models
Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery
One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions
Shape description and matching using integral invariants on eccentricity transformed images
Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately
Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations
International audienceThis paper presents a new framework for capturing large and complex deformations in image registration and atlas construction. This challenging and recurrent problem in computer vision and medical imaging currently relies on iterative and local approaches, which are prone to local minima and, therefore, limit present methods to relatively small deformations. Our general framework introduces to this effect a new direct feature matching technique that finds global correspondences between images via simple nearest-neighbor searches. More specifically, very large image deformations are captured in Spectral Forces, which are derived from an improved graph spectral representation. We illustrate the benefits of our framework through a new enhanced version of the popular Log-Demons algorithm, named the Spectral Log-Demons, as well as through a groupwise extension, named the Groupwise Spectral Log-Demons, which is relevant for atlas construction. The evaluations of these extended versions demonstrate substantial improvements in accuracy and robustness to large deformations over the conventional Demons approaches
Functionality representations and applications for shape analysis
A central goal of computer graphics is to provide tools for designing and simulating real or imagined artifacts. An understanding of functionality is important in enabling such modeling tools. Given that the majority of man-made artifacts are designed to serve a certain function, the functionality of objects is often reflected by their geometry, the way that they are organized in an environment, and their interaction with other objects or agents. Thus, in recent years, a variety of methods in shape analysis have been developed to extract functional information about objects and scenes from these different types of cues. In this report, we discuss recent developments that incorporate functionality aspects into the analysis of 3D shapes and scenes. We provide a summary of the state-of-the-art in this area, including a discussion of key ideas and an organized review of the relevant literature. More specifically, the report is structured around a general definition of functionality from which we derive criteria for classifying the body of prior work. This definition also facilitates a comparative view of methods for functionality analysis. We focus on studying the inference of functionality from a geometric perspective, and pose functionality analysis as a process involving both the geometry and interactions of a functional entity. In addition, we discuss a variety of applications that benefit from an analysis of functionality, and conclude the report with a discussion of current challenges and potential future works
- …