329 research outputs found
Differential rotation and meridional flow in the solar supergranulation layer: Measuring the eddy viscosity
We measure the eddy viscosity in the outermost layers of the solar convection
zone by comparing the rotation law computed with the Reynolds stress resulting
from f-plane simulations of the angular momentum transport in rotating
convection with the observed differential rotation pattern. The simulations
lead to a negative vertical and a positive horizontal angular momentum
transport. The consequence is a subrotation of the outermost layers, as it is
indeed indicated both by helioseismology and the observed rotation rates of
sunspots. In order to reproduce the observed gradient of the rotation rate a
value of about 1.5 x 10^{13} cm/s for the eddy viscosity is necessary.
Comparison with the magnetic eddy diffusivity derived from the sunspot decay
yields a surprisingly large magnetic Prandtl number of 150 for the
supergranulation layer. The negative gradient of the rotation rate also drives
a surface meridional flow towards the poles, in agreement with the results from
Doppler measurements. The successful reproduction of the abnormally positive
horizontal cross correlation (on the northern hemisphere) observed for bipolar
groups then provides an independent test for the resulting eddy viscosity.Comment: 6 pages, 8 figures, Astronomy and Astrophysics (subm.
Local models of stellar convection: Reynolds stresses and turbulent heat transport
We study stellar convection using a local three-dimensional MHD model, with
which we investigate the influence of rotation and large-scale magnetic fields
on the turbulent momentum and heat transport. The former is studied by
computing the Reynolds stresses, the latter by calculating the correlation of
velocity and temperature fluctuations, both as functions of rotation and
latitude. We find that the horisontal correlation, Q_(theta phi), capable of
generating horisontal differential rotation, is mostly negative in the southern
hemisphere for Coriolis numbers exceeding unity, corresponding to equatorward
flux of angular momentum in accordance with solar observations. The radial
component Q_(r phi) is negative for slow and intermediate rotation indicating
inward transport of angular momentum, while for rapid rotation, the transport
occurs outwards. Parametrisation in terms of the mean-field Lambda-effect shows
qualitative agreement with the turbulence model of Kichatinov & R\"udiger
(1993) for the horisontal part H \propto Q_(theta phi)/cos(theta), whereas for
the vertical part, V \propto Q_(r phi)/sin(theta), agreement only for
intermediate rotation exists. The Lambda-coefficients become suppressed in the
limit of rapid rotation, this rotational quenching being stronger for the V
component than for H. We find that the stresses are enhanced by the presence of
the magnetic field for field strengths up to and above the equipartition value,
without significant quenching. Concerning the turbulent heat transport, our
calculations show that the transport in the radial direction is most efficient
at the equatorial regions, obtains a minimum at midlatitudes, and shows a
slight increase towards the poles. The latitudinal heat transport does not show
a systematic trend as function of latitude or rotation.Comment: 26 pages, 20 figures, final published version. For a version with
higher resolution figures, see http://cc.oulu.fi/~pkapyla/publ.htm
Meridional flow and differential rotation by gravity darkening in fast rotating solar-type stars
An explanation is presented for the rather strong total surface differential
rotation of the observed very young solar-type stars like AB Dor and PZ Tel.
Due to its rapid rotation a nonuniform energy flux leaves the stellar core so
that the outer convection zone is nonuniformly heated from below. Due to this
`gravity darkening' of the equator a meridional flow is created flowing
equatorwards at the surface and thus accelerating the equatorial rotation. The
effect linearly grows with the normalized pole-equator difference, \epsilon, of
the heat-flux at the bottom of the convection zone. A rotation rate of about 9
h leads to \epsilon=0.1 for a solar-type star. In this case the resulting
equator-pole differences of the angular velocity at the stellar surface,
\delta\Omega, varies from unobservable 0.005/day to the (desired) value of 0.03
day when the dimensionless diffusivity factors and c_\chi vary
between 1 and 0.1 (standard value c_\nu \simeq c_\chi \simeq 0.3, see Table 1.)
In all cases the related temperature differences between pole and equator at
the surface are unobservably small.
The (clockwise) meridional circulation which we obtain flows opposite to the
(counterclockwise) circulation appearing as a byproduct in the \Lambda-theory
of the nonuniform rotation in outer convection zones. The consequences of this
situation for those dynamo theories of stellar activity are discussed which
work with the meridional circulation as the dominant magnetic-advection effect
in latitude to produce the solar-like form of the butterfly diagram.
Key words: Hydrodynamics, Star: rotation, Stars: pre-main sequence, Stellar
activityComment: 4 pages, 3 figures, Astronomy and Astrophysics (subm.
The cross helicity at the solar surface by simulations and observations
The quasilinear mean-field theory for driven MHD turbulence leads to the
result that the observed cross helicity may directly yield the
magnetic eddy diffusivity \eta_{T} of the quiet Sun. In order to model the
cross helicity at the solar surface, magnetoconvection under the presence of a
vertical large-scale magnetic field is simulated with the nonlinear MHD code
NIRVANA. The very robust result of the calculations is that \simeq 2
independent of the applied magnetic field amplitude. The
correlation coefficient for the cross helicity is about 10%. Of similar
robustness is the finding that the rms value of the magnetic perturbations
exceeds the mean-field amplitude (only) by a factor of five. The characteristic
helicity speed u_{\eta} as the ratio of the eddy diffusivity and the density
scale height for an isothermal sound velocity of 6.6 km/s proves to be 1 km/s
for weak fields. This value well coincides with empirical results obtained from
the data of the HINODE satellite and the Swedish 1-m Solar Telescope (SST)
providing the cross helicity component . Both simulations and
observations thus lead to a numerical value of \eta_{T} \simeq 10^12 cm^2 /s as
characteristic for the surface of the quiet Sun.Comment: 6 pages, 6 figure
Meridional Circulation and Global Solar Oscillations
We investigate the influence of large-scale meridional circulation on solar
p-modes by quasi-degenerate perturbation theory, as proposed by
\cite{lavely92}. As an input flow we use various models of stationary
meridional circulation obeying the continuity equation. This flow perturbs the
eigenmodes of an equilibrium model of the Sun. We derive the signatures of the
meridional circulation in the frequency multiplets of solar p-modes. In most
cases the meridional circulation leads to negative average frequency shifts of
the multiplets. Further possible observable effects are briefly discussed.Comment: 14 pages, 5 figures, submittted to Solar Physics Topical Issue
"HELAS
Magnetic Field Topology in Low-Mass Stars: Spectropolarimetric Observations of M Dwarfs
(ABRIDGED) We report here our mapping of the magnetic field topology of the
M4 dwarf G 164-31 (or Gl 490B), which is expected to be fully convective, based
on time series data collected from 20 hours of observations spread over 3
successive nights with the ESPaDOnS spectropolarimeter. Our tomographic imaging
technique applied to time series of rotationally modulated circularly polarized
profiles reveals an axisymmetric large-scale poloidal magnetic field on the M4
dwarf. We then apply a synthetic spectrum fitting technique for measuring the
average magnetic flux on the star. The flux measured in G 164-31 is Bf =
3.2+-0.4 kG, which is significantly greater than the average value of 0.68 kG
determined from the imaging technique. The difference indicates that a
significant fraction of the stellar magnetic energy is stored in small-scale
structures at the surface of G 164-31. Our H_alpha emission light curve shows
evidence for rotational modulation suggesting the presence of localized
structure in the chromosphere of this M dwarf. The radius of the M4 dwarf
derived from the rotational period and the projected equatorial velocity is at
least 30% larger than that predicted from theoretical models. We argue that
this discrepancy is likely primarily due to the young nature of G 164-31 rather
than primarily due to magnetic field effects, indicating that age is an
important factor which should be considered in the interpretation of this
observational result. We also report here our polarimetric observations of five
other M dwarfs with spectral types from M0 to M4.5, three of them showing
strong Zeeman signatures.Comment: 16 pages, 6 figures, accepted by Ap
Doppler images and the underlying dynamo. The case of AF Leporis
The (Zeeman-)Doppler imaging studies of solar-type stars very often reveal
large high-latitude spots. This also includes F stars that possess relatively
shallow convection zones, indicating that the dynamo operating in these stars
differs from the solar dynamo. We aim to determine whether mean-field dynamo
models of late-F type dwarf stars can reproduce the surface features recovered
in Doppler maps. In particular, we wish to test whether the models can
reproduce the high-latitude spots observed on some F dwarfs. The photometric
inversions and the surface temperature maps of AF Lep were obtained using the
Occamian-approach inversion technique. Low signal-to-noise spectroscopic data
were improved by applying the least-squares deconvolution method. The locations
of strong magnetic flux in the stellar tachocline as well as the surface fields
obtained from mean-field dynamo solutions were compared with the observed
surface temperature maps. The photometric record of AF Lep reveals both long-
and short-term variability. However, the current data set is too short for
cycle-length estimates. From the photometry, we have determined the rotation
period of the star to be 0.9660+-0.0023 days. The surface temperature maps show
a dominant, but evolving, high-latitude (around +65 degrees) spot. Detailed
study of the photometry reveals that sometimes the spot coverage varies only
marginally over a long time, and at other times it varies rapidly. Of a suite
of dynamo models, the model with a radiative interior rotating as fast as the
convection zone at the equator delivered the highest compatibility with the
obtained Doppler images.Comment: accepted for publication in Astronomy & Astrophysic
Temperature distribution in magnetized neutron star crusts
We investigate the influence of different magnetic field configurations on
the temperature distribution in neutron star crusts. We consider axisymmetric
dipolar fields which are either restricted to the stellar crust, ``crustal
fields'', or allowed to penetrate the core, ``core fields''. By integrating the
two-dimensional heat transport equation in the crust, taking into account the
classical (Larmor) anisotropy of the heat conductivity, we obtain the crustal
temperature distribution, assuming an isothermal core. Including quantum
magnetic field effects in the envelope as a boundary condition, we deduce the
corresponding surface temperature distributions. We find that core fields
result in practically isothermal crusts unless the surface field strength is
well above G while for crustal fields with surface strength above a
few times G significant deviations from isothermality occur at core
temperatures inferior or equal to K. At the stellar surface, the cold
equatorial region produced by the quantum suppression of heat transport
perpendicular to the field in the envelope, present for both core and crustal
fields, is significantly extended by the classical suppression at higher
densities in the case of crustal fields. This can result, for crustal fields,
in two small warm polar regions which will have observational consequences: the
neutron star has a small effective thermally emitting area and the X-ray pulse
profiles are expected to have a distinctively different shape compared to the
case of a neutron star with a core field. These features, when compared with
X-ray data on thermal emission of young cooling neutron stars, will open a way
to provide observational evidence in favor, or against, the two radically
different configurations of crustal or core magnetic fields.Comment: 10 pages, 10 figures, submitted to A&
Magnetospheric Accretion and Ejection of Matter in Resistive Magnetohydrodynamic Simulations
The ejection of matter in the close vicinity of a young stellar object is
investigated, treating the accretion disk as a gravitationally bound reservoir
of matter. By solving the resistive MHD equations in 2D axisymmetry using our
version of the Zeus-3D code with newly implemented resistivity, we study the
effect of magnetic diffusivity in the magnetospheric accretion-ejection
mechanism. Physical resistivity was included in the whole computational domain
so that reconnection is enabled by the physical as well as the numerical
resistivity. We show, for the first time, that quasi-stationary fast ejecta of
matter, which we call {\em micro-ejections}, of small mass and angular momentum
fluxes, can be launched from a purely resistive magnetosphere. They are
produced by a combination of pressure gradient and magnetic forces, in presence
of ongoing magnetic reconnection along the boundary layer between the star and
the disk, where a current sheet is formed. Mass flux of micro-ejection
increases with increasing magnetic field strength and stellar rotation rate,
and is not dependent on the disk to corona density ratio and amount of
resistivity.Comment: 18 pages, many revisions from previous version, accepted in Ap
- …
