50 research outputs found

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication

    Analysis of microRNA signatures using size-coded ligation-mediated PCR

    Get PDF
    The expression pattern and regulatory functions of microRNAs (miRNAs) are intensively investigated in various tissues, cell types and disorders. Differential miRNA expression signatures have been revealed in healthy and unhealthy tissues using high-throughput profiling methods. For further analyses of miRNA signatures in biological samples, we describe here a simple and efficient method to detect multiple miRNAs simultaneously in total RNA. The size-coded ligation-mediated polymerase chain reaction (SL-PCR) method is based on size-coded DNA probe hybridization in solution, followed-by ligation, PCR amplification and gel fractionation. The new method shows quantitative and specific detection of miRNAs. We profiled miRNAs of the let-7 family in a number of organisms, tissues and cell types and the results correspond with their incidence in the genome and reported expression levels. Finally, SL-PCR detected let-7 expression changes in human embryonic stem cells as they differentiate to neuron and also in young and aged mice brain and bone marrow. We conclude that the method can efficiently reveal miRNA signatures in a range of biological samples

    Centromere-associated topoisomerase activity in bloodstream form Trypanosoma brucei

    Get PDF
    Topoisomerase-II accumulates at centromeres during prometaphase, where it resolves the DNA catenations that represent the last link between sister chromatids. Previously, using approaches including etoposide-mediated topoisomerase-II cleavage, we mapped centromeric domains in trypanosomes, early branching eukaryotes in which chromosome segregation is poorly understood. Here, we show that in bloodstream form Trypanosoma brucei, RNAi-mediated depletion of topoisomerase-IIα, but not topoisomerase-IIβ, results in the abolition of centromere-localized activity and is lethal. Both phenotypes can be rescued by expression of the corresponding enzyme from T. cruzi. Therefore, processes which govern centromere-specific topoisomerase-II accumulation/activation have been functionally conserved within trypanosomes, despite the long evolutionary separation of these species and differences in centromeric DNA organization. The variable carboxyl terminal region of topoisomerase-II has a major role in regulating biological function. We therefore generated T. brucei lines expressing T. cruzi topoisomerase-II truncated at the carboxyl terminus and examined activity at centromeres after the RNAi-mediated depletion of the endogenous enzyme. A region necessary for nuclear localization was delineated to six residues. In other organisms, sumoylation of topoisomerase-II has been shown to be necessary for regulated chromosome segregation. Evidence that we present here suggests that sumoylation of the T. brucei enzyme is not required for centromere-specific cleavage activity

    Labeled EF-Tus for rapid kinetic studies of pretranslocation complex formation

    Get PDF
    The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in translation elongation. Together with fluorophore derivatives of aa-tRNA and of ribosomal protein L11, located within the GTPase associated center (GAC), these labeled EF-Tus allow development of two new FRET assays that permit the dynamics of distance changes between EF-Tu and both L11 (Tu-L11 assay) and aa-tRNA (Tu-tRNA assay) to be determined during the decoding process. We use these assays to examine: (i) the relative rates of EF-Tu movement away from the GAC and from aa-tRNA during decoding, (ii) the effects of the misreading-inducing antibiotics streptomycin and paromomycin on tRNA selection at the A-site, and (iii) how strengthening the binding of aa-tRNA to EF-Tu affects the rate of EF-Tu movement away from L11 on the ribosome. These FRET assays have the potential to be adapted for high throughput screening of ribosomal antibiotics

    The CCR4-NOT Complex Is Implicated in the Viability of Aneuploid Yeasts

    Get PDF
    To identify the genes required to sustain aneuploid viability, we screened a deletion library of non-essential genes in the fission yeast Schizosaccharomyces pombe, in which most types of aneuploidy are eventually lethal to the cell. Aneuploids remain viable for a period of time and can form colonies by reducing the extent of the aneuploidy. We hypothesized that a reduction in colony formation efficiency could be used to screen for gene deletions that compromise aneuploid viability. Deletion mutants were used to measure the effects on the viability of spores derived from triploid meiosis and from a chromosome instability mutant. We found that the CCR4-NOT complex, an evolutionarily conserved general regulator of mRNA turnover, and other related factors, including poly(A)-specific nuclease for mRNA decay, are involved in aneuploid viability. Defective mutations in CCR4-NOT complex components in the distantly related yeast Saccharomyces cerevisiae also affected the viability of spores produced from triploid cells, suggesting that this complex has a conserved role in aneuploids. In addition, our findings suggest that the genes required for homologous recombination repair are important for aneuploid viability

    A prospective survey in European Society of Cardiology member countries of atrial fibrillation management: baseline results of EURO bservational Research Programme Atrial Fibrillation (EORP-AF) Pilot General Registry

    Get PDF
    Aims: Given the advances in atrial fibrillation (AF) management and the availability of new European Society of Cardiology (ESC) guidelines, there is a need for the systematic collection of contemporary data regarding the management and treatment of AF in ESC member countries. Methods and results: We conducted a registry of consecutive in- and outpatients with AF presenting to cardiologists in nine participating ESC countries. All patients with an ECG-documented diagnosis of AF confirmed in the year prior to enrolment were eligible. We enroled a total of 3119 patients from February 2012 to March 2013, with full data on clinical subtype available for 3049 patients (40.4% female; mean age 68.8 years). Common comorbidities were hypertension, coronary disease, and heart failure. Lone AF was present in only 3.9% (122 patients). Asymptomatic AF was common, particularly among those with permanent AF. Amiodarone was the most common antiarrhythmic agent used (~20%), while beta-blockers and digoxin were the most used rate control drugs. Oral anticoagulants (OACs) were used in 80% overall, most often vitamin K antagonists (71.6%), with novel OACs being used in 8.4%. Other antithrombotics (mostly antiplatelet therapy, especially aspirin) were still used in one-third of the patients, and no antithrombotic treatment in only 4.8%. Oral anticoagulants were used in 56.4% of CHA 2DS2-VASc = 0, with 26.3% having no antithrombotic therapy. A high HAS-BLED score was not used to exclude OAC use, but there was a trend towards more aspirin use in the presence of a high HAS-BLED score. Conclusion: The EURObservational Research Programme Atrial Fibrillation (EORP-AF) Pilot Registry has provided systematic collection of contemporary data regarding the management and treatment of AF by cardiologists in ESC member countries. Oral anticoagulant use has increased, but novel OAC use was still low. Compliance with the treatment guidelines for patients with the lowest and higher stroke risk scores remains suboptimal. © The Author 2013

    Sequential anaerobic-aerobic treatment of azo dyes: Decolourisation and amine degradability

    No full text
    The feasibility of sequential anaerobic–aerobic treatment for complete dye degradation was evaluated using three azo dyes, namely Remazol Red RR, Remazol Blue RR and Remazol Yellow RR. The robustness of the anaerobic treatment was investigated in biofilm reactors and the influences of carrier type, hydraulic retention time, dye concentration and dye type were studied. A decolourisation of 98% was obtained in the anaerobic reactors with Poraver carriers whilst decolourisation was slightly lower in the reactors with Kaldnes carriers, which could be attributed to differences in biofilm structure. Almost complete decolourisation could be achieved at dye concentrations between 100 and 2000 mg l− 1 even when the reactors were not adapted to the specific dye. The fate of the metabolites during aerobic treatment was followed; however, only partial degradation of the aromatic amines could be achieved. The metabolites from Remazol Yellow RR auto-oxidised upon exposure to aerobic conditions forming a product, which resisted further degradation. Additional batch tests were conducted using aerobic sludge from a textile and a chemical industry but neither of these inocula was able to completely degrade the recalcitrant amines. This shows the need of a post-treatment to be able to ensure complete amine degradation

    Immobilisation of TiO(2) for combined photocatalytic-biological azo dye degradation.

    No full text
    The biodegradability of the azo dye Remazol Red RR (100 mg/l) was evaluated using unadapted activated sludge and the experiment confirmed the recalcitrance of the dye. Using a combination of photocatalysis and an aerobic biological step, the biodegradability was improved significantly and complete removal of both colour and COD were achieved. Furthermore, TiO(2) was successfully immobilised on borosilicate glass slides by calcination, which facilitates reuse of the catalyst. The catalytic activity of the immobilised TiO(2) was close to that of suspended TiO(2). A reduced activity was however observed when the TiO(2) slides were used repeatedly. When comparing NaOH, calcination and UV irradiation for regeneration of the TiO(2) slides, immersion in NaOH was shown to be the most efficient method
    corecore