63 research outputs found

    Проектування високонапірного робочого колеса багатоступінчатих насосів для об’єктів нафтовидобутку

    Get PDF
    В статті запропоновано іноваційний метод підвищення напірності ступеня багатоступінчатого насоса до 20% з використанням методу чисельного дослідження.В статье предложен инновационный метод повышения напирности степени многоступенчатого насоса до 20% с использованием метода численного исследования.The paper proposed an innovative method of increasing of the multistage pump head to 20% using the method of numerical investigation

    An effector from the Huanglongbing-associated pathogen targets citrus proteases

    Get PDF
    The citrus industry is facing an unprecedented challenge from Huanglongbing (HLB). All cultivars can be affected by the HLB-associated bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) and there is no known resistance. Insight into HLB pathogenesis is urgently needed in order to develop effective management strategies. Here, we use Sec-delivered effector 1 (SDE1), which is conserved in all CLas isolates, as a molecular probe to understand CLas virulence. We show that SDE1 directly interacts with citrus papain-like cysteine proteases (PLCPs) and inhibits protease activity. PLCPs are defense-inducible and exhibit increased protein accumulation in CLas-infected trees, suggesting a role in citrus defense responses. We analyzed PLCP activity in field samples, revealing specific members that increase in abundance but remain unchanged in activity during infection. SDE1-expressing transgenic citrus also exhibit reduced PLCP activity. These data demonstrate that SDE1 inhibits citrus PLCPs, which are immune-related proteases that enhance defense responses in plants

    Overexpression of the aphid-induced serine protease inhibitor <i>CI2c </i>gene in barley affects the generalist green peach aphid, not the specialist bird cherry-oat aphid

    Get PDF
    <div><p>Aphids are serious pests in crop plants. In an effort to identify plant genes controlling resistance against aphids, we have here studied a protease inhibitor, CI2c in barley (<i>Hordeum vulgare</i> L.). The <i>CI2c</i> gene was earlier shown to be upregulated by herbivory of the bird cherry-oat aphid <i>(Rhopalosiphum padi</i> L.<i>)</i> in barley genotypes with moderate resistance against this aphid, but not in susceptible lines. We hypothesized that CI2c contributes to the resistance. To test this idea, cDNA encoding <i>CI2c</i> was overexpressed in barley and bioassays were carried out with <i>R</i>. <i>padi</i>. For comparison, tests were carried out with the green peach aphid (<i>Myzus persicae</i> Sulzer), for which barley is a poor host. The performance of <i>R</i>. <i>padi</i> was not different on the <i>CI2c</i>-overexpressing lines in comparison to controls in test monitoring behavior and fecundity. <i>M</i>. <i>persicae</i> preference was affected as shown in the choice test, this species moved away from control plants, but remained on the <i>CI2c</i>-overexpressing lines. <i>R</i>. <i>padi</i>-induced responses related to defense were repressed in the overexpressing lines as compared to in control plants or the moderately resistant genotypes. A putative susceptibility gene, coding for a β-1,3-glucanase was more strongly induced by aphids in one of the <i>CI2c</i>-overexpressing lines. The results indicate that the CI2c inhibitor in overexpressing lines affects aphid-induced responses by suppressing defense. This is of little consequence to the specialist <i>R</i>.<i>padi</i>, but causes lower non-host resistance towards the generalist <i>M</i>. <i>persicae</i> in barley.</p></div

    The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry.

    Get PDF
    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogensCladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu \u3e61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an α-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulation

    Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum

    Get PDF
    Background: Many species belonging to the genus Colletotrichum cause anthracnose disease on a wide range of plant species. In addition to their economic impact, the genus Colletotrichum is a useful model for the study of the evolution of host specificity, speciation and reproductive behaviors. Genome projects of Colletotrichum species have already opened a new era for studying the evolution of pathogenesis in fungi. Results: We sequenced and annotated the genomes of four strains in the Colletotrichum acutatum species complex (CAsc), a clade of broad host range pathogens within the genus. The four CAsc proteomes and secretomes along with those representing an additional 13 species (six Colletotrichum spp. and seven other Sordariomycetes) were classified into protein families using a variety of tools. Hierarchical clustering of gene family and functional domain assignments, and phylogenetic analyses revealed lineage specific losses of carbohydrate-active enzymes (CAZymes) and proteases encoding genes in Colletotrichum species that have narrow host range as well as duplications of these families in the CAsc. We also found a lineage specific expansion of necrosis and ethylene-inducing peptide 1 (Nep1)-like protein (NLPs) families within the CAsc. Conclusions: This study illustrates the plasticity of Colletotrichum genomes, and shows that major changes in host range are associated with relatively recent changes in gene content

    Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshellwaste: an overview

    Get PDF
    As the current global trend towards more stringent environmental standards, technical applicability and cost-effectiveness became key factors in the selection of adsorbents for water and wastewater treatment. Recently, various low-cost adsorbents derived from agricultural waste, industrial by-products or natural materials, have been intensively investigated. In this respect, the eggshells from egg-breaking operations constitute significant waste disposal problems for the food industry, so the development of value-added by-products from this waste is to be welcomed. The egg processing industry is very competitive, with low profit margins due to global competition and cheap imports. Additionally, the costs associated with the egg shell disposal (mainly on landfill sites) are significant, and expected to continue increasing as landfill taxes increase. The aim of the present review is to provide an overview on the development of low-cost adsorbents derived from eggshell by-products

    The Genomes of the Fungal Plant Pathogens Cladosporium fulvum and Dothistroma septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry

    Get PDF
    We sequenced and compared the genomes of the Dothideomycete fungal plant pathogens Cladosporium fulvum (Cfu) (syn. Passalora fulva) and Dothistroma septosporum (Dse) that are closely related phylogenetically, but have different lifestyles and hosts. Although both fungi grow extracellularly in close contact with host mesophyll cells, Cfu is a biotroph infecting tomato, while Dse is a hemibiotroph infecting pine. The genomes of these fungi have a similar set of genes (70% of gene content in both genomes are homologs), but differ significantly in size (Cfu >61.1-Mb; Dse 31.2-Mb), which is mainly due to the difference in repeat content (47.2% in Cfu versus 3.2% in Dse). Recent adaptation to different lifestyles and hosts is suggested by diverged sets of genes. Cfu contains an a-tomatinase gene that we predict might be required for detoxification of tomatine, while this gene is absent in Dse. Many genes encoding secreted proteins are unique to each species and the repeat-rich areas in Cfu are enriched for these species-specific genes. In contrast, conserved genes suggest common host ancestry. Homologs of Cfu effector genes, including Ecp2 and Avr4, are present in Dse and induce a Cf-Ecp2- and Cf-4-mediated hypersensitive response, respectively. Strikingly, genes involved in production of the toxin dothistromin, a likely virulence factor for Dse, are conserved in Cfu, but their expression differs markedly with essentially no expression by Cfu in planta. Likewise, Cfu has a carbohydrate-degrading enzyme catalog that is more similar to that of necrotrophs or hemibiotrophs and a larger pectinolytic gene arsenal than Dse, but many of these genes are not expressed in planta or are pseudogenized. Overall, comparison of their genomes suggests that these closely related plant pathogens had a common ancestral host but since adapted to different hosts and lifestyles by a combination of differentiated gene content, pseudogenization, and gene regulatio

    Identification and functional characterization of proteases and protease inhibitors involved in virulence of fungal tomato pathogens

    No full text
    Pathogens cause disease on both animal and plant hosts. For successful infection and establishment of disease, pathogens need proper weaponry to protect themselves against host defenses and to promote host colonization to facilitate uptake of nutrients for growth and reproduction. Indeed, plant pathogens secrete various types of effector molecules (proteins and secondary metabolites) to manipulate host responses for their own needs. Secreted proteases and protease inhibitors (PIs) are such effector molecules. Proteases can hydrolyze plant defense proteins and PIs can inhibit plant proteases that are part of the host surveillance system. Despite the importance of proteases and PIs secreted by fungal pathogens, little information about their role in virulence is available. The recent advances in genomics, bioinformatics, transcriptomics and proteomics have facilitated identification and functional analysis of proteases and PIs relevant to plant-fungus interactions. Chapter 1 is an introduction to the thesis outlining the general concept of plant-microbe interactions. It briefly describes the current knowledge of pathogenicity mechanisms employed by fungal plant pathogens and defense mechanisms employed by their host plants. It further introduces proteases and PIs and their potential role in modifying pathogenesis-related (PR) proteins to facilitate fungal virulence. It completes with an outline of the PhD research project. In chapter 2, we analyzed and compared the number of putatively secreted proteases present in the genomes of 30 fungi with different lifestyles. The analysis showed that fungi with a saprotrophic and hemibiotrophic lifestyle contain more secreted protease genes than biotrophs. Surprisingly, the number of protease genes present in the genome of Cladosporium fulvum, a biotrophic tomato pathogen, is comparable with that of hemibiotrophs and saprotrophs. We analyzed all C. fulvum protease genes both at the transcriptome and proteome level by means of RNA-Seq/RT-qrtPCR and mass spectrometry analyses, respectively. Results showed that many proteases of C. fulvum are not expressed during growth in planta, likely sustaining the biotrophic growth pattern of this fungus. In chapter 3, using an alignment-based gene prediction tool, we identified pseudogenes containing disruptive mutations (DMs) that likely lead to the production of nonfunctional proteins, including a group of putatively secreted proteases from C. fulvum. Fewer DMs were observed in other fungi including Dothistroma septosporum, a hemibiotrophic pine needle pathogen and close relative of C. fulvum, and suggested that the difference in pseudogenization of proteases between these two pathogens might in part explain their different lifestyle. In chapter 4, we analyzed the tomato genome and identified 30 candidate chitinases genes, of which six encoded chitin binding domain (CBD)-containing chitinases. Transcriptome and proteome data were collected after inoculation of tomato with several fungal pathogens and allowed the identification of two CBD-chitinases (SlChi2 and SlChi13) with a putative role in protecting tomato against C. fulvum and F. oxysporum f. sp. lycopersici (F. oxysporum), respectively. Purified CBD-chitinases SlChi1, SlChi2, SlChi4 and SlChi13 were incubated with secreted protein extracts (SPEs) from seven fungal tomato pathogens and we could show that SPEs from F. oxysporum, Verticillium dahliae, and Botrytis cinerea modified SlChi1 and SlChi13. LC-MS/MS analysis revealed that incubation with SPE from F. oxysporum removed the N-terminal 37 and 49 amino acids, comprising part and complete CBD domain from SlChi1 and SlChi13, respectively. Removal of the CBD of SlChi1 and SlChi13 by SPE of F. oxysporum reduced the antifungal activity of the two chitinases. We identified a fungal metalloprotease (FoMep1) and a subtilisin serine protease (FoSep1) that synergistically cleaved both SlChi1 and SlChi13. Transgenic F. oxysporum in which the genes encoding these two proteases were knocked out by homologous recombination lost the ability to cleave the two chitinases and were compromised in virulence on tomato compared to the parental wild type. These results suggest an important role of the two chitinases in defense of tomato against this pathogen. In chapter 5, we searched for host target(s) of the apoplastic effector Avr9 secreted by C. fulvum during infection of tomato. Based on the structural homology of Avr9 with carboxy peptidase inhibitors, we hypothesized that the host target of Avr9 might be apoplastic proteases. To isolate and identify Avr9 targets in apoplastic fluids, we used synthetic biotinylated Avr9, and performed pull-down and far-western blotting assays with apoplastic fluids from tomato inoculated with a C. fulvum race lacking the Avr9 gene. However, we found no specific Avr9-interacting proteins from pull-down complexes analyzed by mass spectrometry or by far-western blotting. Then, we hypothesized that glycosylation of Avr9 might be required for its biological function. The results of mass spectrometry analysis revealed that Avr9 is N-glycosylated when secreted by C. fulvum, containing at least two GlcNac and six mannose residues. The necrosis-inducing activity of glycosylated and non-glycosylated Avr9 was assayed but appeared not significantly different; however, we could not produce sufficient amounts of (biotinylated)-glycosylated Avr9 to perform pull-down assays for identification of potential glycosylated Arv9-interacting proteins by mass spectrometry. Previous studies as well as the results present in this PhD thesis showed that fungal pathogens secrete a plethora of effectors including proteases and PIs. Many of identified proteases and PIs mediate effector-triggered immunity in host plants. In chapter 6, we reviewed the recent advances on the various roles of proteases and PIs in compromising basal defense responses induced by microbe-associated molecular patterns. Chapter 7 is a summarizing discussion of the PhD thesis. We showed determinative roles of proteases and PIs in shaping plant-pathogen interactions. The expression and pseudogenization studies on proteases of C. fulvum showed that the genome content does not necessarily reflect the lifestyle of this fungus. This is true for many classes of fungal genes, including proteases. Fungi contain many different types of proteases whose functions may partly overlap. This hampers the discovery of their biological functions. We could demonstrate that two different types of proteases (metalloprotease (FoMep1) and subtilisin serine protease (FoSep1)) of F. oxysporum act synergistically to modify and reduce antifungal activity of two plant CBD-chitinases. Identifying additional proteases is achievable by a targeted proteomics approach using known targets as we did in chapter 4. However, identification of biological functions of proteases is a technical challenge when targets are not known. Multi-gene targeting of protease and PI genes is required to reveal their function in plant-pathogen interactions, which can only be addressed by using advanced genetic tools in future research. </p

    Treatability of landfill leachate by combined upflow anaerobic sludge blanket reactor and aerated lagoon

    No full text
    Continuous upflow anaerobic sludge blanket reactor performs more favorably at the higher organic loading rate than other anaerobic treatment. The treatment of municipal landfill leachate of Shiraz’s city investigated using continuous flow anaerobic reactor and subsequently aerated lagoon. Landfill leachate has chemical oxygen demand of 45,000–90,000 mg/L and ammonia nitrogen at 1,000–2,500 and heavy metals that can impact biological treatments. Capacity of anaerobic and aerobic reactors is 10 and 20 L that operated at detention time of 2 and 4 days, respectively. Organic loading rate of upflow anaerobic sludge blanket is between 0.5–20 g chemical oxygen demand/L/day. Chemical oxygen demand removal efficiencies are between 57–87, 35–70 and 66–94% in the anaerobic, aerobic and whole system, respectively. As the entry, leachate organic loading rate increased from 1 to 20 g/L/day, the chemical oxygen demand removal efficiency reached a maximum of 71% and 84% in the anaerobic reactor and whole system, respectively, at high organic loading rate. Ammonium removal efficiency was about 54% after the aerobic stage

    Fabrication of novel electrodialysis heterogeneous ion exchange membranes by incorporating PANI/GO functionalized composite nanoplates

    No full text
    © 2017, Springer-Verlag GmbH Germany. Novel mixed-matrix electrodialysis heterogeneous ion exchange membranes were fabricated using polyaniline (PANI)-co-graphene oxide (GO) functionalized composite nanoplates. The PANI-co-GO functionalized composite nanoplates were prepared by in situ chemical oxidative polymerization of aniline in the presence of GO nanoplates. The synthesized PANI/GO were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, and scanning electron microscopy. The SEM images demonstrated that utilizing of PANI/GO in membrane matrix led to formation of membranes with a compact structure. Also, more uniform distribution was observed for the incorporated PANI/GO membrane compared to the embedded GO nanoplates ones. The surface hydrophilicity, water content, and ion exchange capacity were enhanced by utilizing PANI/GO composite nanoplates. The membrane potential, transport number, and selectivity were also enhanced in sodium and barium chloride ionic solutions in presence of functionalized nanoplates. The newly prepared membranes showed lower selectivity and transport number for barium ions compared to sodium ions. The sodium and barium flux were enhanced by using PANI/GO. Dialytic rate results showed that modified membranes in this study have good ability in lead ion removal from wastewater. The enhancement in lead flux was more than 50% for the modified membrane containing PANI/GO in comparison with pristine ones.status: publishe
    corecore