116 research outputs found

    A Tale of Two Schools and Their One Journey to Improvement

    Get PDF
    In accordance with the accountability measures required for public education by the United States Federal Government, the State of Colorado has developed a system for ranking school performance based on academic achievement, academic growth, and postsecondary and workforce readiness (Colorado Department of Education, 2016b). Schools are rated as Turnaround, Priority Improvement, Improvement, or Performance status (Colorado Department of Education, 2016b). Schools in Turnaround or Priority Improvement status must move to Improvement or Performance status in less than five years (Colorado Department of Education, 2016e). The focus of the study was on the leadership skills and behaviors of principals in schools that have successfully moved from Turnaround or Priority Improvement status to Performance status. A case study was conducted using two schools in similar urban settings that had moved from Turnaround to Improvement status. While both principals assumed it would be important to address instructional leadership first, both found that they had to address climate and culture and mission and vision first before they could make lasting and impactful changes in instruction and curriculum. Five areas in which principals focused their leadership in order to foster student achievement emerged. These areas included mission and vision/strategic leadership, school and staff culture/cultural leadership, instruction and curriculum/instructional leadership, teacher efficacy/transformational leadership, and management and resources/managerial leadership. This work is significant in that it would provide direction for leaders of schools in need of improvement

    The UARS microwave limb sounder version 5 data set: Theory, characterization, and validation

    Get PDF
    Nitric acid (HNO3) is a major player in processes controlling the springtime depletion of polar ozone. It is the main constituent of the Polar Stratospheric Clouds (PSCs) and a primary reservoir for reactive nitrogen. Potential variations in the stratospheric circulation and temperature may alter the extent and duration of PSCs activity, influencing the future ozone levels significantly. Monitoring HNO3 and its long-term variability, especially in polar region, is then crucial for better understanding issues related to ozone decline and expected recovery. In this study we present an intercomparison between ground based HNO3 measurements, carried out by means of the Ground-Based Millimeter-wave Spectrometer (GBMS), and two satellite data sets produced by the two NASA/JPL Microwave Limb Sounder (MLS) experiments. In particular, we compare UARS MLS measurements (1991-1999) with those carried out by the GBMS at South Pole, Antarctica (90°S), Fall of 1993 and 1995. A similar intercomparison is made between Aura MLS HNO3 observations (2004 - to date) and GBMS measurements obtained during the period February 2004 - March 2007, at the mid-latitudes/high altitudes station of Testa Grigia (45.9° N, 7.7° E, elev. 3500 m), and during polar winters 2008/09 and 2009/2010 at Thule Air Base (76.5°N 68.8°W), Greenland. We assess systematic differences between GBMS and both UARS and Aura HNO3 data sets at seven potential temperature levels (ξ) spanning the range 465 – 960 K. The UARS data set advected to the South Pole shows a low bias, within 20% for all ξ levels but the 960 K, with respect to GBMS measurements. A very good agreement, within 5%, is obtained between Aura and GBMS observations at Testa Grigia, while larger differences, possibly due to latitude dependent effects, are observed over Thule. These differences are under further investigations but a preliminary comparison over Thule among MLS v3, GBMS, and ACE-FTS measurements suggests that GBMS measurements carried out during winter 2009 might not be reliable. These comparisons have been performed in the framework of the NASA JPL GOZCARDS project, which is aimed at developing a long-term, global data record of the relevant stratospheric constituents in the context of ozone decline. GBMS has been selected in GOZCARDS since its HNO3 dataset, although sampling different latitudes in different years, is the only one spanning a sufficiently long time interval for cross-calibrating HNO3 measurements by the UARS and Aura MLS experiments

    MAKO: a pathfinder instrument for on-sky demonstration of low-cost 350 micron imaging arrays

    Get PDF
    Submillimeter cameras now have up to 10^4 pixels (SCUBA 2). The proposed CCAT 25-meter submillimeter telescope will feature a 1 degree field-of-view. Populating the focal plane at 350 microns would require more than 10^6 photon-noise limited pixels. To ultimately achieve this scaling, simple detectors and high-density multiplexing are essential. We are addressing this long-term challenge through the development of frequency-multiplexed superconducting microresonator detector arrays. These arrays use lumped-element, direct-absorption resonators patterned from titanium nitride films. We will discuss our progress toward constructing a scalable 350 micron pathfinder instrument focusing on fabrication simplicity, multiplexing density, and ultimately a low per-pixel cost

    Validation of the Aura Microwave Limb Sounder HNOmeasurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of ∌0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to ∌5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ∌±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging)

    Validation of Aura Microwave Limb Sounder O-3 and CO observations in the upper troposphere and lower stratosphere

    Get PDF
    International audienceGlobal satellite observations of ozone and carbon monoxide from the Microwave Limb Sounder (MLS) on the EOS Aura spacecraft are discussed with emphasis on those observations in the 215–100 hPa region (the upper troposphere and lower stratosphere). The precision, resolution and accuracy of the data produced by the MLS “version 2.2” processing algorithms are discussed and quantified. O3 accuracy is estimated at ~40 ppbv +5% (~20 ppbv +20% at 215 hPa) while the CO accuracy is estimated at ~30 ppbv +30% for pressures of 147 hPa and less. Comparisons with expectations and other observations show good agreements for the O3 product, generally consistent with the systematic errors quoted above. In the case of CO, a persistent factor of ~2 high bias is seen at 215 hPa. However, the morphology is shown to be realistic, consistent with raw MLS radiance data, and useful for scientific study. The MLS CO data at higher altitudes are shown to be consistent with other observations

    Validation of the Aura Microwave Limb Sounder HNO3 Measurements

    Get PDF
    We assess the quality of the version 2.2 (v2.2) HNO3 measurements from the Microwave Limb Sounder (MLS) on the Earth Observing System Aura satellite. The MLS HNO3 product has been greatly improved over that in the previous version (v1.5), with smoother profiles, much more realistic behavior at the lowest retrieval levels, and correction of a high bias caused by an error in one of the spectroscopy files used in v1.5 processing. The v2.2 HNO3 data are scientifically useful over the range 215 to 3.2 hPa, with single-profile precision of 0.7 ppbv throughout. Vertical resolution is 3–4 km in the upper troposphere and lower stratosphere, degrading to 5 km in the middle and upper stratosphere. The impact of various sources of systematic uncertainty has been quantified through a comprehensive set of retrieval simulations. In aggregate, systematic uncertainties are estimated to induce in the v2.2 HNO3 measurements biases that vary with altitude between ±0.5 and ±2 ppbv and multiplicative errors of ±5–15% throughout the stratosphere, rising to ±30% at 215 hPa. Consistent with this uncertainty analysis, comparisons with correlative data sets show that relative to HNO3 measurements from ground-based, balloon-borne, and satellite instruments operating in both the infrared and microwave regions of the spectrum, MLS v2.2 HNO3 mixing ratios are uniformly low by 10–30% throughout most of the stratosphere. Comparisons with in situ measurements made from the DC-8 and WB-57 aircraft in the upper troposphere and lowermost stratosphere indicate that the MLS HNO3 values are low in this region as well, but are useful for scientific studies (with appropriate averaging).PublishedD24S401.7. Osservazioni di alta e media atmosferaJCR Journalreserve

    Validation of the Aura Microwave Limb Sounder Temperature and Geopotential Height Measurements

    Get PDF
    This paper describes the retrievals algorithm used to determine temperature and height from radiance measurements by the Microwave Limb Sounder on EOS Aura. MLS is a "limbscanning" instrument, meaning that it views the atmosphere along paths that do not intersect the surface - it actually looks forwards from the Aura satellite. This means that the temperature retrievals are for a "profile" of the atmosphere somewhat ahead of the satellite. Because of the need to view a finite sample of the atmosphere, the sample spans a box about 1.5km deep and several tens of kilometers in width; the optical characteristics of the atmosphere mean that the sample is representative of a tube about 200-300km long in the direction of view. The retrievals use temperature analyses from NASA's Goddard Earth Observing System, Version 5 (GEOS-5) data assimilation system as a priori states. The temperature retrievals are somewhat deperrde~zt on these a priori states, especially in the lower stratosphere. An important part of the validation of any new dataset involves comparison with other, independent datasets. A large part of this study is concerned with such comparisons, using a number of independent space-based measurements obtained using different techniques, and with meteorological analyses. The MLS temperature data are shown to have biases that vary with height, but also depend on the validation dataset. MLS data are apparently biased slightly cold relative to correlative data in the upper troposphere and slightly warm in the middle stratosphere. A warm MLS bias in the upper stratosphere may be due to a cold bias in GEOS-5 temperatures
    • 

    corecore