4,286 research outputs found
The Single-Photon Router
We have embedded an artificial atom, a superconducting "transmon" qubit, in
an open transmission line and investigated the strong scattering of incident
microwave photons ( GHz). When an input coherent state, with an average
photon number is on resonance with the artificial atom, we observe
extinction of up to 90% in the forward propagating field. We use two-tone
spectroscopy to study scattering from excited states and we observe
electromagnetically induced transparency (EIT). We then use EIT to make a
single-photon router, where we can control to what output port an incoming
signal is delivered. The maximum on-off ratio is around 90% with a rise and
fall time on the order of nanoseconds, consistent with theoretical
expectations. The router can easily be extended to have multiple output ports
and it can be viewed as a rudimentary quantum node, an important step towards
building quantum information networks.Comment: 5 pages, 3 figure
Assessment of healthcare delivery in the early management of bacterial meningitis in UK young infants: an observational study.
OBJECTIVE: To define early presenting features of bacterial meningitis in young infants in England and to review the adequacy of individual case management as compared with relevant national guidelines and an expert panel review. DESIGN: Retrospective medical case note review and parental recall using standardised questionnaires. SETTING: England and Wales. PARTICIPANTS: Infants aged <90 days with bacterial meningitis diagnosed between July 2010 and July 2013. RESULTS: Of the 97 cases recruited across England and Wales, 66 (68%) were admitted from home and 31 (32%) were in hospital prior to disease onset. Almost all symptoms reported by parents appeared at the onset of the illness, with very few new symptoms appearing subsequently. Overall, 20/66 (30%) infants were assessed to have received inappropriate prehospital management. The median time from onset of first symptoms to first help was 5 hours (IQR: 2-12) and from triage to receipt of first antibiotic dose was 2.0 hours (IQR: 1.0-3.3), significantly shorter in infants with fever or seizures at presentation compared with those without (1.7 (IQR: 1.0-3.0) vs 4.2 (IQR: 1.8-6.3) hours, p=0.02). Overall, 26 (39%) infants had a poor outcome in terms of death or neurological complication; seizures at presentation was the only significant independent risk factor (OR, 7.9; 95% CI 2.3 to 207.0). For cases in hospital already, the median time from onset to first dose of antibiotics was 2.6 (IQR: 1.3-9.8) hours, and 12/31 (39%) of infants had serious neurological sequelae at hospital discharge. Hearing test was not performed in 23% and when performed delayed by ≥4 weeks in 41%. CONCLUSIONS: In young infants, the non-specific features associated with bacterial meningitis appear to show no progression from onset to admission, whereas there were small but significant differences in the proportion of infants with more specific symptoms at hospital admission compared with at the onset of the illness, highlighting the difficulties in early recognition by parents and healthcare professionals alike. A substantial proportion of infants received inappropriate prehospital and posthospital management. We propose a targeted campaign for education and harmonisation of practice with evidence-based management algorithms
DNA polymerase B deficiency is linked to aggressive breast cancer: a comprehensive analysis of gene copy number, mRNA and protein expression in multiple cohorts
Short arm of chromosome 8 is a hot spot for chromosomal breaks, losses and amplifications in breast cancer. Although such genetic changes may have phenotypic consequences, the identity of candidate gene(s) remains to be clearly defined. Pol β gene is localized to chromosome 8p12 - p11 and encodes a key DNA base excision repair protein. Pol β may be a tumour suppressor and involved in breast cancer pathogenesis. We conducted the first and the largest study to comprehensively evaluate pol β in breast cancer. We investigated pol β gene copy number changes in two cohorts (n=128 & n=1952), pol β mRNA expression in two cohorts (n=249 & n=1952) and pol β protein expression in two cohorts (n=1406 & n=252). Artificial neural network analysis for pol β interacting genes was performed in 249 tumours. For mechanistic insights, pol β gene copy number changes, mRNA and protein levels were investigated together in 1 28 tumours and validated in 1952 tumours. Low pol β mRNA expression as well as low pol β protein expression was associated high grade, lymph node positivity, pleomorphism, triple negative, basal - like phenotypes and poor survival (ps<0.001). In oestrogen receptor (ER) positive sub - group that received tamoxifen, low pol β protein remains associated with aggressive phenotype and poor survival (ps<0.001). Artificial neural network analysis revealed ER as a top pol β interacting gene. Mechanistically, there was strong positive correlation between pol β gene copy number changes and pol β mRNA expression (p<0.0000001) and between pol β mRNA and pol β protein expression (p<0.0000001). This is the first study to provide evidence that pol β deficiency is linked to aggressive breast cancer and may have prognostic and predictive significance in patients
Giant Cross Kerr Effect for Propagating Microwaves Induced by an Artificial Atom
We have investigated the cross Kerr phase shift of propagating microwave
fields strongly coupled to an artificial atom. The artificial atom is a
superconducting transmon qubit in an open transmission line. We demonstrate
average phase shifts of 11 degrees per photon between two coherent microwave
fields both at the single-photon level. At high control power, we observe phase
shifts up to 30 degrees. Our results provide an important step towards quantum
gates with propagating photons in the microwave regime.Comment: 5 pages, 4 figure
Breast cancer histologic grading using digital microscopy: concordance and outcome association
Aims: Virtual microscopy utilising digital whole slide imaging (WSI) is increasingly used in breast pathology. Histologic grade is one of the strongest prognostic factors in breast cancer (BC). This study aims at investigating the agreement between BC grading using traditional light microscopy (LM) and digital whole slide imaging (WSI) with consideration of reproducibility and impact on outcome prediction.
Methods: A large (n=1675) well-characterised cohort of BC originally graded by LM was re-graded using WSI. Two separate virtual-based grading sessions (V1 and V2) were performed with a three months washout period. Outcome was assessed using breast cancer specific and distant metastasis free survival.
Results: The concordance between LM grading and WSI was strong (LM/SWI Cramer’s V: V1=0.576, and V2=0.579). The agreement regarding grade components was as follows: Tubule formation=0.538, Pleomorphism=0.422 and Mitosis=0.514. Greatest discordance was observed between adjacent grades whereas high/low grade discordance was uncommon (1.5%). The intra-observer agreement for the two WSI sessions was substantial for grade (V1/V2 Cramer’s V=0.676; kappa=0.648) and grade components (Cramer’s V T=0.628, P=0.573 and M=0.580). Grading using both platforms showed strong association with outcome (All p-value <0.001). Although mitotic scores assessed using both platforms were strongly associated with outcome, WSI tends to underestimate mitotic counts.
Conclusions: Virtual microscopy is a reliable and reproducible method for assessing BC histologic grade. Regardless of the observer or assessment platform, histologic grade is a significant predictor of outcome. Continuing advances in imaging technology could potentially provide improved performance of WSI BC grading and in particular mitotic count assessment
Artificial Intelligence for Detecting Preterm Uterine Activity in Gynacology and Obstertric Care
Preterm birth brings considerable emotional and economic costs to families and society. However, despite extensive research into understanding the risk factors, the prediction of patient mechanisms and improvements to obstetrical practice, the UK National Health Service still annually spends more than £2.95 billion on this issue. Diagnosis of labour in normal pregnancies is important for minimizing unnecessary hospitalisations, interventions and expenses. Moreover, accurate identification of spontaneous preterm labour would also allow clinicians to start necessary treatments early in women with true labour and avert unnecessary treatment and hospitalisation for women who are simply having preterm contractions, but who are not in true labour. In this research, the Electrohysterography signals have been used to detect preterm births, because Electrohysterography signals provide a strong basis for objective prediction and diagnosis of preterm birth. This has been achieved using an open dataset, which contains 262 records for women who delivered at term and 38 who delivered prematurely. Three different machine learning algorithm were used to identify these records. The results illustrate that the Random Forest performed the best of sensitivity 97%, specificity of 85%, Area under the Receiver Operator curve (AUROC) of 94% and mean square error rate of 14%
Primordial magnetic fields at preheating
Using lattice techniques we investigate the generation of long range
cosmological magnetic fields during a cold electroweak transition. We will show
how magnetic fields arise, during bubble collisions, in the form of magnetic
strings. We conjecture that these magnetic strings originate from the alignment
of magnetic dipoles associated with EW sphaleron-like configurations. We also
discuss the early thermalisation of photons and the turbulent behaviour of the
scalar fields after tachyonic preheating.Comment: 7 pages. Talk presented at Lattice200
The Massive Progenitor of the Type II-Linear Supernova 2009kr
We present early-time photometric and spectroscopic observations of supernova (SN) 2009kr in NGC 1832. We find that its properties to date support its classification as Type II-linear (SN II-L), a relatively rare subclass of core-collapse supernovae (SNe). We have also identified a candidate for the SN progenitor star through comparison of pre-explosion, archival images taken with WFPC2 on board the Hubble Space Telescope with SN images obtained using adaptive optics plus NIRC2 on the 10 m Keck-II telescope. Although the host galaxy's substantial distance (similar to 26 Mpc) results in large uncertainties in the relative astrometry, we find that if this candidate is indeed the progenitor, it is a highly luminous (M(V)(0) = -7.8 mag) yellow supergiant with initial mass similar to 18-24 M(circle dot). This would be the first time that an SN II-L progenitor has been directly identified. Its mass may be a bridge between the upper initial mass limit for the more common Type II-plateau SNe and the inferred initial mass estimate for one Type II-narrow SN.Hungarian OTKA K76816NSF AST-0707769, AST-0908886Sylvia & Jim Katzman FoundationTABASGO FoundationNASA through STScI AR-11248, GO-10877Harvard UniversityUC BerkeleyUniversity of VirginiaNASA/Swift NNX09AQ66GDOEAstronom
SN 2015U: A Rapidly Evolving and Luminous Type Ibn Supernova
Supernova (SN) 2015U (also known as PSN J07285387+3349106) was discovered in
NGC 2388 on 2015 Feb. 11. A rapidly evolving and luminous event, it showed
effectively hydrogen-free spectra dominated by relatively narrow helium P-Cygni
spectral features and it was classified as a SN Ibn. In this paper we present
photometric, spectroscopic, and spectropolarimetric observations of SN 2015U,
including a Keck/DEIMOS spectrum (resolution 5000) which fully
resolves the optical emission and absorption features. We find that SN 2015U is
best understood via models of shock breakout from extended and dense
circumstellar material (CSM), likely created by a history of mass loss from the
progenitor with an extreme outburst within 1-2 yr of core collapse (but
we do not detect any outburst in our archival imaging of NGC 2388). We argue
that the high luminosity of SN 2015U was powered not through Ni decay
but via the deposition of kinetic energy into the ejecta/CSM shock interface.
Though our analysis is hampered by strong host-galaxy dust obscuration (which
likely exhibits multiple components), our dataset makes SN 2015U one of the
best-studied Type Ibn supernovae and provides a bridge of understanding to
other rapidly fading transients, both luminous and relatively faint.Comment: 20 pages, 15 figures, 4 table
- …
