165 research outputs found

    Surface albedo changes with time on Titan’s possible cryovolcanic sites: Cassini/VIMS processing and geophysical implications

    Get PDF
    We present a study on Titan’s possibly cryovolcanic and varying regions as suggested from previous studies [e.g. 1;2;7]. These regions, which are potentially subject to change over time in brightness and are located close to the equator, are Tui Regio, Hotei Regio, and Sotra Patera. We apply two methods on Cassini/VIMS data in order to retrieve their surface properties and monitor any temporal variations. First, we apply a statistical method, the Principal Component Analysis (PCA) [3;4] where we manage to isolate regions of distinct and diverse chemical composition called ‘Region of interest – RoI’. Then, we focus on retrieving the spectral differences (with respect to the Huygens landing site albedo) among the RoIs by applying a radiative transfer code (RT) [5;3]. Hence, we are able to view the dynamical range and evaluate the differences in surface albedo within the RoIs of the three regions. In addition, using this double procedure, we study the temporal surface variations of the three regions witnessing albedo changes with time for Tui Regio from 2005-2009 (darkening) and Sotra Patera from 2005-2006 (brightening) at all wavelengths [3]. The surface albedo variations and the presence of volcanic-like features within the regions in addition to a recent study [6] that calculates Titan's tidal response are significant indications for the connection of the interior with the cryovolcanic candidate features with implications for the satellite’s astrobiological potential

    Singular regional brightening events on Titan as seen by Cassini/VIMS

    Get PDF
    Titan, the largest satellite of Saturn, is the only satellite in the solar system with a dense atmosphere. The close and continuous observations of Titan by the Cassini spacecraft, in orbit around Saturn since July 2004, bring us evidences that Titan tropo-sphere and low stratosphere experience an exotic, but complete meteorological cycle similar to the Earth hy-drological cycle, with hydrocarbons evaporation, con-densation in clouds, and rainfall. Cassini monitoring campaigns also demonstrate that Titan’s cloud cover-age and climate vary with latitude. Titan’s tropics, with globally weak meteorological activity and widespread dune fields, seem to be slightly more arid than the poles, where extensive and numerous liquid reservoirs and sustained cloud activity were discovered. Only a few tropospheric clouds have been observed at Titan’s tropics during the southern summer [2-4]. As equinox was approaching (in August 2009), they oc-curred more frequently and appeared to grow in strength and size [5-7]

    Overview of the coordinated ground-based observations of Titan during the Huygens mission

    Get PDF
    Coordinated ground-based observations of Titan were performed around or during the Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the momentary in situ observations by the probe with the synoptic coverage provided by continuing ground-based programs. These observations consisted of three different categories: (1) radio telescope tracking of the Huygens signal at 2040 MHz, (2) observations of the atmosphere and surface of Titan, and (3) attempts to observe radiation emitted during the Huygens Probe entry into Titan's atmosphere. The Probe radio signal was successfully acquired by a network of terrestrial telescopes, recovering a vertical profile of wind speed in Titan's atmosphere from 140 km altitude down to the surface. Ground-based observations brought new information on atmosphere and surface properties of the largest Satumian moon. No positive detection of phenomena associated with the Probe entry was reported. This paper reviews all these measurements and highlights the achieved results. The ground-based observations, both radio and optical, are of fundamental imnortance for the interpretatinn of results from the Huygens mission

    The evolution of the atmosphere and surface of Titan from Cassini infrared observations

    Get PDF
    Saturn’s Earth-like satellite Titan has a thick and dense atmosphere consisting of nitrogen (98.4%), methane (1.6%) and trace gases such as hydrocarbons and nitriles [1]. The condensed organics are deposited on the surface and the atmosphere-surface-interior interactions shape the ground. In particular, Titan’s methane cycle, similarly to the Earth’s hydrologic cycle, plays an important role in these exchanges by transporting methane at all layers. By applying our radiative transfer code (ARTT) to Cassini/CIRS data taken during Titan flybys from 2004-2010 and to the 1980 Voyager 1 flyby values inferred from the reanalysis of the Infrared Radiometer Spectrometer (IRIS) spectra, as well as to the intervening ground- and space- based observations (such as with ISO), we study the stratospheric evolution over a Titanian year (V1 encounter Ls=9° was reached in mid-2010)

    Modeling Titan's clouds from VIMS data

    No full text
    International audienc

    Constraining the composition and geological history of the main types of terrains found in the equatorial belt of Titan

    Get PDF
    Over these past thirteen years, near-IR imaging data from the Visual and Infrared Mapping Spectrometer (VIMS) onboard Cassini gave significant hints on the spectroscopic and geological diversity of the terrains on Titan's surface. The composition of those terrains still remains unconfirmed yet. Nonetheless, by applying a newly updated radiative transfer model, we provide excellent constraints on the composition and structure for the main IR-units present in the equatorial belt (±40°N/S). Indeed, by combining this method of correction with a spectral mixing model for water ice and tholins, we determine the main chemical species present within IR-units and relate them to the observed geomorphology. We therefore propose a scenario that could lead to the current distribution of the IR-units

    Surface changes in mid-latitude regions on Titan

    Get PDF
    International audienceWe present a study focused on the mid-latitude and close to the equator surface regions on Titan that present an interest on their spectral behavior and/or morphology. These are regions where spectroscopic anomalies have been reported in the evolution of the brightness and several interpretations have been proposed (cryovolcanic candidates, evaporates, lacustrine, etc [1;2;5]). Also in our work here we have included analysis of some undifferentiated plains (also referred to as 'blandlands'), which are vast expanses of terrains that appear bland in the radar data [3]. By applying a Radiative transfer code [4;2] we have analyzed these regions to look for evolution with time through their spectral behavior. We use as reference point and calibration tool the surface albedo retrieval of the Huygens Landing site (Titan's ground truth) and we also check the variability of the surface albedo of these regions against areas that are not expected to change with time (e.g. dune fields), by retrieving their albedo differences at all wavelengths [2]. We report here surface albedo changes with time for some of these regions of interest that imply connection to exogenic and/or endogenic processes
    • 

    corecore