171 research outputs found

    Cost benefit analysis of mothership concept and investigation of optimum operational practice for offshore wind farms

    Get PDF
    In far offshore, challenging climate conditions limit the operability and the accessibility of the maintenance vessels significantly.Furthermore, if significant time is spent for the travels between offshore windfarm and O&M port; maintenance tasks cannot be carried out. A mothership can provide the solution for the operators. Due to the fact that the mothership can be moored to a close location to the offshore wind farm, the reaction time to the failures can be minimised; thus the availability of the offshore wind farm can be maximised. In this context, the focus of this research is the cost benefit analysis of the mothership concept and the investigation of the optimum operational practice, which brings financial and operational benefits. This is achieved by performing operational simulations in the offshore wind operational expenditure and logistics optimisation tool StrathOW-OM, which is developed bythe University of Strathclyde and commercial partner organisations. Results show that significant time is spent between offshore windfarm and port, which increases the downtime. October-December is identified as the most critical period for chartering a mothership

    An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors

    Get PDF
    The Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). The virus has rapidly spread in humans, causing the ongoing Coronavirus pandemic. Recent studies have shown that, similarly to SARS-CoV, SARS-CoV-2 utilises the Spike glycoprotein on the envelope to recognise and bind the human receptor ACE2. This event initiates the fusion of viral and host cell membranes and then the viral entry into the host cell. Despite several ongoing clinical studies, there are currently no approved vaccines or drugs that specifically target SARS-CoV-2. Until an effective vaccine is available, repurposing FDA approved drugs could significantly shorten the time and reduce the cost compared to de novo drug discovery. In this study we attempted to overcome the limitation of in silico virtual screening by applying a robust in silico drug repurposing strategy. We combined and integrated docking simulations, with molecular dynamics (MD), Supervised MD (SuMD) and Steered MD (SMD) simulations to identify a Spike protein – ACE2 interaction inhibitor. Our data showed that Simeprevir and Lumacaftor bind the receptor-binding domain of the Spike protein with high affinity and prevent ACE2 interaction

    Structural biology in the fight against COVID-19

    Get PDF
    How can structural biology help us understand and combat SARS-CoV-2? Researchers in the field share their experiences and opinions and point to the challenges that lie ahead.Microscopic imaging and technolog

    Catalytic cleavage of HEAT and subsequent covalent binding of the tetralone moiety by the SARS-CoV-2 main protease

    Get PDF
    Here we present the crystal structure of SARS-CoV-2 main protease (Mpro) covalently bound to 2-methyl-1-tetralone. This complex was obtained by co-crystallization of Mpro with HEAT (2-(((4-hydroxyphenethyl)amino)methyl)-3,4-dihydronaphthalen-1(2H)-one) in the framework of a large X-ray crystallographic screening project of Mpro against a drug repurposing library, consisting of 5632 approved drugs or compounds in clinical phase trials. Further investigations showed that HEAT is cleaved by Mpro in an E1cB-like reaction mechanism into 2-methylene-1-tetralone and tyramine. The catalytic Cys145 subsequently binds covalently in a Michael addition to the methylene carbon atom of 2-methylene-1-tetralone. According to this postulated model HEAT is acting in a pro-drug-like fashion. It is metabolized by Mpro, followed by covalent binding of one metabolite to the active site. The structure of the covalent adduct elucidated in this study opens up a new path for developing non-peptidic inhibitors

    The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes

    Get PDF
    Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389–652 (“SUDcore”) of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 Å resolution, respectively) revealed that SUDcore forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUDcore as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5–6 nucleotides, but more extended G-stretches are found in the 3′-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed

    Exoerythrocytic Plasmodium Parasites Secrete a Cysteine Protease Inhibitor Involved in Sporozoite Invasion and Capable of Blocking Cell Death of Host Hepatocytes

    Get PDF
    Plasmodium parasites must control cysteine protease activity that is critical for hepatocyte invasion by sporozoites, liver stage development, host cell survival and merozoite liberation. Here we show that exoerythrocytic P. berghei parasites express a potent cysteine protease inhibitor (PbICP, P. berghei inhibitor of cysteine proteases). We provide evidence that it has an important function in sporozoite invasion and is capable of blocking hepatocyte cell death. Pre-incubation with specific anti-PbICP antiserum significantly decreased the ability of sporozoites to infect hepatocytes and expression of PbICP in mammalian cells protects them against peroxide- and camptothecin-induced cell death. PbICP is secreted by sporozoites prior to and after hepatocyte invasion, localizes to the parasitophorous vacuole as well as to the parasite cytoplasm in the schizont stage and is released into the host cell cytoplasm at the end of the liver stage. Like its homolog falstatin/PfICP in P. falciparum, PbICP consists of a classical N-terminal signal peptide, a long N-terminal extension region and a chagasin-like C-terminal domain. In exoerythrocytic parasites, PbICP is posttranslationally processed, leading to liberation of the C-terminal chagasin-like domain. Biochemical analysis has revealed that both full-length PbICP and the truncated C-terminal domain are very potent inhibitors of cathepsin L-like host and parasite cysteine proteases. The results presented in this study suggest that the inhibitor plays an important role in sporozoite invasion of host cells and in parasite survival during liver stage development by inhibiting host cell proteases involved in programmed cell death

    Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease

    Get PDF
    COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease

    The neurology of COVID-19 revisited: A proposal from the environmental neurology specialty group of the world federation of neurology to implement international neurological registries

    Get PDF
    A comprehensive review of the neurological disorders reported during the current COVID-19 pandemic demonstrates that infection with SARS-CoV-2 affects the central nervous system (CNS), the peripheral nervous system (PNS) and the muscle. CNS manifestations include: headache and decreased responsiveness considered initial indicators of potential neurological involvement; anosmia, hyposmia, hypogeusia, and dysgeusia are frequent early symptoms of coronavirus infection. Respiratory failure, the lethal manifestation of COVID-19, responsible for 264,679 deaths worldwide, is probably neurogenic in origin and may result from the viral invasion of cranial nerve I, progressing into rhinencephalon and brainstem respiratory centers. Cerebrovascular disease, in particular large-vessel ischemic strokes, and less frequently cerebral venous thrombosis, intracerebral hemorrhage and subarachnoid hemorrhage, usually occur as part of a thrombotic state induced by viral attachment to ACE2 receptors in endothelium causing widespread endotheliitis, coagulopathy, arterial and venous thromboses. Acute hemorrhagic necrotizing encephalopathy is associated to the cytokine storm. A frontal hypoperfusion syndrome has been identified. There are isolated reports of seizures, encephalopathy, meningitis, encephalitis, and myelitis. The neurological diseases affecting the PNS and muscle in COVID-19 are less frequent and include Guillain-Barré syndrome; Miller Fisher syndrome; polyneuritis cranialis; and rare instances of viral myopathy with rhabdomyolysis. The main conclusion of this review is the pressing need to define the neurology of COVID-19, its frequency, manifestations, neuropathology and pathogenesis. On behalf of the World Federation of Neurology we invite national and regional neurological associations to create local databases to report cases with neurological manifestations observed during the on-going pandemic. International neuroepidemiological collaboration may help define the natural history of this worldwide problem

    X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease

    Get PDF
    The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (M^(pro)), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to M^(pro). In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2
    corecore