83 research outputs found
Enhancement of ion cyclotron waves in hydrogen helium mixtures
Metastable helium atom addition to hydrogen plasma for ion cyclotron mode enhancemen
Computational Fluid Dynamics of Catalytic Reactors
Today, the challenge in chemical and material synthesis is not only the development of new catalysts and supports to synthesize a desired product, but also the understanding of the interaction of the catalyst with the surrounding flow field. Computational Fluid Dynamics or CFD is the analysis of fluid flow, heat and mass transfer and chemical reactions by means of computer-based numerical simulations. CFD has matured into a powerful tool with a wide range of applications in industry and academia. From a reaction engineering perspective, main advantages are reduction of time and costs for reactor design and optimization, and the ability to study systems where experiments can hardly be performed, e.g., hazardous conditions or beyond normal operation limits. However, the simulation results will always remain a reflection of the uncertainty in the underlying models and physicochemical parameters so that in general a careful experimental validation is required.
This chapter introduces the application of CFD simulations in heterogeneous catalysis. Catalytic reactors can be classified by the geometrical design of the catalyst material (e.g. monoliths, particles, pellets, washcoats). Approaches for modeling and numerical simulation of the various catalyst types are presented. Focus is put on the principal concepts for coupling the physical and chemical processes on different levels of details, and on illustrative applications. Models for surface reaction kinetics and turbulence are described and an overview on available numerical methods and computational tools is provided
Recommended from our members
Lattice Design for PEP-X Ultimate Storage Ring Light Source
SLAC expertise in designing and operating high current storage rings and the availability of the 2.2-km PEP-II tunnel present an opportunity for building a next generation light source - PEP-X - that would replace the SPEAR3 storage ring in the future. The PEP-X 'baseline' design, with 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. As a next step, a so-called 'ultimate' PEP-X lattice, reducing the emittance to 11 pm-rad at zero current, has been designed. This emittance approaches the diffraction limited photon emittance for multi-keV photons, providing near maximum photon brightness and high coherence. It is achieved by using 7-bend achromat cells in the ring arcs and a 90-m damping wiggler in one of the 6 long straight sections. Details of the lattice design, dynamic aperture, and calculations of the intra-beam scattering effect and Touschek lifetime at a nominal 0.2 A current are presented. Accelerator-based light sources are in high demand for many experimental applications. The availability of the 2.2-km PEP-II tunnel at SLAC presents an opportunity for building a next generation light source - PEP-X - that would replace the existing SPEAR3 light source in the future. The PEP-X study started in 2008, and the 'baseline' design, yielding 164 pm-rad emittance at 4.5 GeV beam energy and a current of 1.5 A, was completed in 2010. This relatively conservative design can be built using existing technology. However, for a long term future, it is natural to investigate a more aggressive, so-called 'ultimate' ring design. The goal is to reduce the electron emittance in both x and y planes to near the diffraction limited photon emittance of 8 pm-rad at hard X-ray photon wavelength of 0.1 nm. This would provide a near maximum photon brightness and significant increase in photon coherence. This study was motivated by the advances in low emittance design at MAX-IV. The latter was used as a starting point for the PEP-X arc lattice, however new features were included into the design for better tuning capabilities and compensation of non-linear optics effects. Further emittance reduction is achieved with a 90-m damping wiggler. Finally, intra-beam scattering (IBS) and Touschek lifetime effects were estimated and cross-checked using various codes
Solving Constraints in Model Transformations
Constraint programming holds many promises for model driven software development (MDSD). Up to now, constraints have only started to appear in MDSD modeling languages, but have not been properly reflected in model transformation. This paper introduces constraint programming in model transformation, shows how constraint programming integrates with QVT Relations - as a pathway to wide spread use of our approach - and describes the corresponding model transformation engine. In particular, the paper will illustrate the use of constraint programming for the specification of attribute values in target models, and provide a qualitative evaluation of the benefit drawn from constraints integrated with QVT Relations
Incremental Backward Change Propagation of View Models by Logic Solvers
View models are key concepts of domain-specific modeling
to provide task-specific focus (e.g., power or communication
architecture of a system) to the designers by highlighting
only the relevant aspects of the system. View models
can be specified by unidirectional forward transformations
(frequently captured by graph queries), and automatically
maintained upon changes of the underlying source model using
incremental transformation techniques. However, tracing
back complex changes from one or more abstract view
to the underlying source model is a challenging task, which,
in general, requires the simultaneous analysis of
transformation
specifications and well-formedness constraints to create
valid changes in the source model. In this paper we introduce
a novel delta-based backward transformation technique
using SAT solvers to synthetize valid and consistent change
candidates in the source model, where only forward
transformation rules are specified for the view models
Light-enhanced Charge Density Wave Coherence in a High-Temperature Superconductor
In high-T cuprates, superconductivity and charge density waves (CDW)
are competitive, yet coexisting orders. To understand their microscopic
interdependence a probe capable of discerning their interaction on its natural
length and time scales is necessary. Here we use ultrafast resonant soft x-ray
scattering to track the transient evolution of CDW correlations in
YBaCuO following the quench of superconductivity by an
infrared laser pulse. We observe a picosecond non-thermal response of the CDW
order, characterized by a large enhancement of spatial coherence, nearly
doubling the CDW correlation length, while only marginally affecting its
amplitude. This ultrafast snapshot of the interaction between order parameters
demonstrates that their competition manifests inhomogeneously through
disruption of spatial coherence, and indicates the role of superconductivity in
stabilizing topological defects within CDW domains.Comment: 29 pages, 9 figures, Main text and Supplementary Material
Enhanced charge density wave coherence in a light-quenched, high-temperature superconductor
Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa2Cu3O6+x after the quench of superconductivity by an infrared laser pulse. We observe a nonthermal response of the CDW order characterized by a near doubling of the correlation length within ≈1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDWs manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations
Coherence properties of focused X-ray beams at high-brilliance synchrotron sources
An analytical approach describing properties of focused partially coherent X-ray beams is presented. The method is based on the results of statistical optics and gives both the beam size and transverse coherence length at any distance behind an optical element. In particular, here Gaussian Schell-model beams and thin optical elements are considered. Limiting cases of incoherent and fully coherent illumination of the focusing element are discussed. The effect of the beam-defining aperture, typically used in combination with focusing elements at synchrotron sources to improve transverse coherence, is also analyzed in detail. As an example, the coherence properties in the focal region of compound refractive lenses at the PETRA III synchrotron source are analyzed
Recommended from our members
Design and performance of the traveling-wave beam chopper for the SSRL injector
A pulsed, split-parallel plate chopper has been designed built, and installed as part of the preinjector of the SSRL Injector. Its function is to allow the linear accelerator three consecutive S-band bunches from the long bunch train provided by a RF gun. A permanent magnet deflector (PMD) at the chopper entrance deflects the beam into an absorber when the chopper pulse is off. The beam is swept across a pair of slits at the beam output end when a 7 kV, 10-ns rise-time pulse passes in the opposite direction through the 75 {Omega} stripline formed by the deflecting plates. Bunches exiting the slits have their trajectories corrected by another PMD, and enter the linac. Beam tests demonstrate that the chopper functions as expected. 9 refs., 5 figs
- …