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An analytical approach describing properties of focused partially coherent

X-ray beams is presented. The method is based on the results of statistical optics

and gives both the beam size and transverse coherence length at any distance

behind an optical element. In particular, here Gaussian Schell-model beams and

thin optical elements are considered. Limiting cases of incoherent and fully

coherent illumination of the focusing element are discussed. The effect of the

beam-defining aperture, typically used in combination with focusing elements at

synchrotron sources to improve transverse coherence, is also analyzed in detail.

As an example, the coherence properties in the focal region of compound

refractive lenses at the PETRA III synchrotron source are analyzed.
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1. Introduction

While ultimate storage rings, being diffraction-limited X-ray

sources, are still under development (Bei et al., 2010), present

third-generation synchrotrons are partially coherent sources

(Vartanyants & Singer, 2010). The construction of these

sources initiated developments of new research areas, which

utilize partial coherence of the X-ray radiation. Most promi-

nent among these techniques are coherent X-ray diffractive

imaging (CXDI) (Vartanyants et al., 2010; Chapman &

Nugent, 2010; Mancuso et al., 2010; Vartanyants & Yefanov,

2013) and X-ray photon correlation spectroscopy (XPCS)

(Grübel & Zontone, 2004). In CXDI static real space images

of the sample are obtained by phase retrieval techniques

(Fienup, 1982), whereas in XPCS dynamics of a system are

explored by correlation techniques (Goodman, 2007).

The key feature of all coherence-based methods is the

interference of the field scattered by different parts of the

sample. As such, spatial coherence across the sample is

essential and understanding the coherence properties of the

incoming X-ray beams generated at new generation synchro-

tron sources is of vital importance for the scientific community.

A detailed knowledge of the coherence properties can even be

used to improve the resolution obtained in the CXDI phase

retrieval (Whitehead et al., 2009).

For scientific applications at the nanoscale, beam sizes from

tens to hundreds of nanometers with high flux densities are

required. These can be achieved by an effective use of

focusing elements. Nowadays several techniques to focus

X-ray beams at third- and fourth-generation sources are used,

such as Kirkpatrick–Baez (KB) mirrors (Mimura et al., 2010),

Fresnel zone plates (Sakdinawat & Attwood, 2010), bent

crystals in Bragg geometry (Zhu et al., 2012) and compound

refractive lenses (CRLs) (Snigirev et al., 1996; Schroer et al.,

2003). A typical focusing scheme is shown in Fig. 1.

Synchrotron radiation is generated in the undulator and a

focusing element consisting of a stack of CRLs focuses the

beam. In this paper we describe the propagation of partially

coherent X-ray radiation through such a focusing system and

determine its size and coherence properties at any position

downstream from the CRL. Our results can be naturally

generalized to other types of focusing elements such as Fresnel

zone plates.

Synchrotron sources are generally considered as incoherent

sources, since different electrons in the electron bunch radiate

independently in the frame moving with the electrons. Due to

relativistic effects, in the laboratory frame the radiation is

confined to a narrow cone of angles �� � 1/2� (see Fig. 1),

where � is the Lorentz factor. This relativistic confinement

Figure 1
Partially coherent radiation is generated in the undulator and is focused
by a stack of CRLs. Intensity and coherence properties of the focused
radiation are considered. The last lens is cut to indicate the structure of a
single CRL.
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implies an effective degree of transverse coherence at the

source, as totally incoherent sources radiate into all directions

(Goodman, 1985).

The transverse coherence area �x�y of a synchrotron

source can be estimated from Heisenberg’s uncertainty prin-

ciple (Mandel & Wolf, 1995), �x�y � h- 2=4�px�py, where

�x;�y and �px;�py are the uncertainties in the position and

momentum in the horizontal and vertical direction, respec-

tively. Due to the de Broglie relation p = h- k, where k = 2�=�,

the uncertainty in the momentum �p can be associated with

the source divergence ��, �p = h- k��, and the coherence area

in the source plane is given by

�x�y �
�

4�

� �2
1

��x��y

: ð1Þ

Substituting typical values of the source divergence at a third-

generation synchrotron source (Balewski et al., 2004) into

equation (1), we find the minimum transverse coherence

length at the source to be about a few micrometers. With the

source sizes of tens to hundreds of micrometers (Balewski et

al., 2004), it is clear that present third-generation X-ray

sources have to be described as partially coherent sources.

A useful model to describe the radiation properties of

partially coherent sources is the Gaussian Schell-model

(GSM) (Mandel & Wolf, 1995). This model has been applied

for the analysis of the radiation field generated by optical

lasers (Gori, 1980), third-generation synchrotron sources (see,

for example, Howels & Kincaid, 1994; Vartanyants & Singer,

2010, and references therein) and X-ray free-electron lasers

(Singer et al., 2008, 2012; Roling et al., 2011; Vartanyants et al.,

2011). The problem of propagation of partially coherent

radiation through thin optical elements (OEs) in the frame of

GSM has been widely discussed in optics (Turunen & Friberg,

1986; Yura & Hanson, 1987). However, the propagation of

partially coherent radiation through the focusing elements

with finite apertures has not been considered before. For

X-ray beamlines at third-generation synchrotron sources such

focusing elements are especially important. In this work we

propose a general approach to describe propagation of

partially coherent radiation through these beamlines.

The paper is organized as follows. We start with a short

introduction to the optical coherence theory with special focus

on third-generation synchrotron radiation sources in x2.

x3 describes the propagation of partially coherent X-ray

radiation through thin focusing elements. Diffraction-limited

focus and infinite apertures are described in x4 and x5. In x6

coherence properties of the focused X-ray beams at PETRA

III are analyzed. The paper is concluded with a summary and

outlook.

2. Coherence: basic equations

2.1. Correlation functions and propagation in free-space

The theory of partially coherent fields is based on the

treatment of correlation functions of the complex wavefield

(Mandel & Wolf, 1995). The concept of optical coherence is

often associated with interference phenomena, where the

mutual coherence function (MCF)1

�ðr1; r2; �Þ ¼ E�ðr1; tÞEðr2; t þ �Þ
� �

ð2Þ

plays the main role. It describes the correlations between two

complex values of the electric field E�ðr1; tÞ and Eðr2; t þ �Þ at

different points r1 and r2 and different times t and t þ �. The

brackets h� � �i denote the time average.

When we consider propagation of the correlation function

of the field in free space, it is convenient to introduce the

cross-spectral density function (CSD), Wðr1; r2;!Þ, which is

defined as the Fourier transform of the MCF (Mandel & Wolf,

1995),

Wðr1; r2;!Þ ¼
R

�ðr1; r2; �Þ expð�i!�Þ d�; ð3Þ

where ! is the frequency of the radiation. By definition, when

the two points r1 and r2 coincide, the CSD represents the

spectral density of the radiation field,

Sðr;!Þ ¼ Wðr; r;!Þ: ð4Þ

The normalized CSD is known as the spectral degree of

coherence (SDC),

�ðr1; r2;!Þ ¼
Wðr1; r2;!Þ

Sðr1;!ÞSðr2;!Þ
� �1=2

: ð5Þ

For all values of r1; r2 and ! the SDC satisfies j�ðr1; r2;!Þj � 1.

The modulus of the SDC can be measured in interference

experiments as the contrast of the interference fringes (Singer

et al., 2008, 2012; Vartanyants et al., 2011).

To characterize the transverse coherence properties of a

wavefield by a single number, the global degree of transverse

coherence can be introduced as (Saldin et al., 2008; Vartany-

ants & Singer, 2010)

�ð!Þ ¼

R
jWðr1; r2;!Þj

2 dr1 dr2R
Sðr;!Þ dr

� �2
: ð6Þ

According to its definition the values of the parameter �ð!Þ lie

in the range 0 � �ð!Þ � 1, where �ð!Þ = 1 and �ð!Þ = 0

characterize fully coherent and incoherent radiation, respec-

tively.

In the following we will apply the concept of correlation

functions to planar secondary sources (Mandel & Wolf, 1995),

where the CSD of the radiation field is given in the source

plane at z0 = 0 with the transverse coordinates s,

Wðs1; s2; z0;!Þ. The propagation of the CSD from the source

plane at z0 to the plane at a distance z from the source is

governed by the following expression (Mandel & Wolf, 1995),

Wðu1; u2; z;!Þ ¼R
Wðs1; s2; z0;!ÞP

�
zðu1; s1;!ÞPzðu2; s2;!Þ ds1 ds2; ð7Þ

where Wðu1; u2; z;!Þ is the propagated CSD in the plane z,

and Pzðu; s;!Þ is the propagator. The integration is performed

in the source plane. For partially coherent X-ray radiation at
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at third-generation synchrotron sources.



third-generation synchrotron sources it is typically sufficient to

use the Fresnel propagator (Goodman, 2005), which is given

by

Pzðu; s;!Þ ¼
k expðikzÞ

2�iz
exp ik

ju� sj2

2z

� �
: ð8Þ

2.2. Gaussian Schell-model sources

The CSD of a GSM source positioned in the plane at z0 is

expressed as (Mandel & Wolf, 1995)2

Wðs1; s2; z0Þ ¼ ½Sðs1Þ�
1=2
½Sðs2Þ�

1=2�ðs2 � s1Þ; ð9Þ

where the spectral density and the SDC in the source plane are

Gaussian functions,

SðsÞ ¼ S0 exp �
s2

x

2	2
x

�
s2

y

2	2
y

� �
;

�ðs2 � s1Þ ¼ exp �
ðs2x � s1xÞ

2

2
2
x

�
ðs2y � s1yÞ

2

2
2
y

" #
:

ð10Þ

Here S0 is a normalization constant, and the parameters 	x;y

and 
x;y define the source size and transverse coherence length

in the source plane in the x- and y-directions, respectively.

Below all values are presented as root-mean-square (r.m.s.)

values, if not stated differently.

The expression of the CSD function in the form of equation

(9) is based on the definition of the SDC (5). In the GSM the

main approximations are that the source is spatially uniform,

i.e. �ðs1; s2Þ = �ðs2 � s1Þ, and all functional dependencies are

described by Gaussian functions.

The CSD Wðu1; u2; zÞ at the distance z from the source can

be calculated using integration of (7) with the Fresnel

propagator (8) (Mandel & Wolf, 1995)3

Wðu1;u2; zÞ ¼

ðS0Þ
1=2 exp i 12ðzÞ

� �
�ðzÞ

exp �
u2

1 þ u2
2

4�2ðzÞ
�
ðu2 � u1Þ

2

2�2ðzÞ

� 	
; ð11Þ

where

�ðzÞ ¼ 	�ðzÞ and �ðzÞ ¼ 
�ðzÞ ð12Þ

are the beam size and transverse coherence length at the

distance z from the source. The parameter

�ðzÞ ¼ 1þ z=zeffð Þ
2

� �1=2
ð13Þ

is the expansion coefficient and

 12ðzÞ ¼ k
u2

2 � u2
1

2RðzÞ
; RðzÞ ¼ z 1þ zeff=zð Þ

2
� �

ð14Þ

are the phase and radius of curvature of the GSM beam. In

(13) and (14) the effective distance

zeff ¼ 2k	2� ð15Þ

has been introduced (Gbur & Wolf, 2001; Vartanyants &

Singer, 2010). At that distance the expansion coefficient is

equal to �ðzeffÞ = 21=2. In the limit of a spatially coherent

source, � = 1, the effective distance zeff coincides with the

Rayleigh length zR = 2k	2, which is often introduced in the

theory of optical Gaussian beams (Saleh & Teich, 1991). It is

noteworthy that the CSD of the beam downstream of the

source is not homogeneous, i.e. �ðu1; u2Þ 6¼ �ðu2 � u1Þ due to

the phase factor  12ðzÞ in (11).

It is important to note here that in the frame of the GSM the

coherence properties of the beam at any position along the

beamline containing OEs (see Fig. 1) will be described by the

same equation (11) with different meaning of the parameters

�ðzÞ, �ðzÞ,  12ðzÞ and �ðzÞ.
The global degree of coherence of a GSM source can be

expressed as (Vartanyants & Singer, 2010)

� ¼
1

1þ ½2�ðzÞ=�ðzÞ�2

 �1=2

: ð16Þ

One important property of the GSM beams is that in the case

of free space propagation the global degree of coherence

remains constant [see equations (12) and (16)].

2.3. Propagation through optical elements

The propagation of the CSD through a thin OE can be

described by a complex valued transmission function TðuÞ

(Goodman, 1985),

~WWðu1; u2; zÞ ¼ Wðu1; u2; zÞT�ðu1ÞTðu2Þ; ð17Þ

where Wðu1; u2; zÞ and ~WWðu1; u2; zÞ are the CSDs incident on

and just behind the OE. It is interesting to note that a thin OE

described by a transmission function TðuÞ does not change the

transverse coherence properties in its plane. It can be readily

seen from (5) and (17) that the modulus of the SDC in front of

j�ðu1; u2; zÞj and behind j ~��ðu1; u2; zÞj the lens are the same,

j ~��ðu1; u2; zÞj ¼ j�ðu1; u2; zÞj. This also implies that according

to (11) the coherence length �ðzÞ will be preserved.

In general, the propagation of partially coherent radiation

through a beamline with a thin OE can be performed in the

following steps. First, the CSD Wðs1; s2; z0Þ at the source is

defined. The propagation of the CSD Wðs1; s2; z0Þ from the

source to the first OE positioned at zL can be described by

equations (7) and (11). For the propagation of the CSD,

Wðu1; u2; zLÞ through the OE equation (17) can be utilized.

Finally, the coherence properties at any position z1 down-

stream of this OE are obtained using (7). The extension of this

procedure to simulate the propagation of partially coherent

radiation through a beamline containing several OEs is

straightforward, provided each OE can be described well in

the frame of the thin OE approximation. Below we will

implement this scheme for a simple beamline geometry

containing an undulator source described by a plane GSM
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2 In this equation and below we omit the frequency dependence ! for brevity.
The GSM will be applied to narrow-bandwidth radiation, where ! is the
average frequency.
3 It is noteworthy that the CSD of a GSM source can be factorized into two
transverse components. We will present calculations for one transverse
direction and will drop the subscript for brevity.



source and a focusing element positioned at a distance zL

downstream of the source (see Fig. 1).

3. Focusing of partially coherent X-ray beams

3.1. Compound refractive lenses

As a focusing element we will consider a parabolic CRL

(Lengeler et al., 1999). The complex valued transmission

function TðuÞ of such a lens can be written in the form4

TðuÞ ¼ BðuÞ exp �i
kjuj2

2f

� �
: ð18Þ

The function BðuÞ defines the absorption and opening aper-

ture of the lens and f is its focal length (Saleh & Teich, 1991;

Goodman, 2005),

f ¼ R=2�: ð19Þ

Here � is the real part of the complex index of refraction (Born

& Wolf, 1999) n = 1� �þ i� that is of the order of 10�6 for

X-ray energies. The parameter � is the imaginary part of the

refractive index and describes absorption. Since � is extremely

small for X-rays, typically several lenses are stacked together

(see Fig. 1) to reduce the focal length and improve the

focusing properties of the lenses. For a combination of N

lenses the focal length is given by

f ¼
1

2�

PN
i¼ 1

1

Ri

� ��1

; ð20Þ

where Ri is the radius of ith lens. The above expression holds if

the total arrangement of lenses fulfils the thin-lens approx-

imation.

Lens imperfections or aberrations, if present, can be taken

into account by introducing additional phase factors in BðuÞ.

Here, we restrict ourselves to aberration-free optics and

assume that for a thin parabolic lens the opening aperture

function can be described by a Gaussian function,

BðuÞ ¼ B0 exp �
juj2

4�2
0

� �
; ð21Þ

where �0 is the effective opening aperture due to absorption

in the material of the lens defined through

�2
0 ¼

f�

2k�
: ð22Þ

The parameter B0 describes the transmission of the lens in its

center and satisfies 0 < B0 � 1.

It is important to note that often the opening aperture of

the OE is determined not by the natural absorption but rather

by the size of the lens or beam-defining aperture in front of the

lens. When this additional aperture �A is comparable with or

smaller than the effective aperture �0 we introduce the total

aperture

1

�2
¼

1

�2
0

þ
1

�2
A

: ð23Þ

To simplify the analysis we consider here a Gaussian form of

the additional aperture. We show in Appendix A that the

coherence properties of the focused radiation do not signifi-

cantly change if a rectangular aperture of the corresponding

size is used.

3.2. Propagation of Gaussian Schell-model beams through
focusing elements

To simulate propagation of partially coherent radiation

through a focusing element we will use the procedure outlined

above (see Fig. 2). The source at z0 will be described in the

frame of the Gaussian Schell-model with the CSD Wðs1; s2; z0Þ

defined in equations (9) and (10). The CSD function incident

on the lens at zL is given by (11). The parameters �L = �ðzLÞ,

�L = �ðzLÞ, �L = �ðzLÞ and RL = RðzLÞ are the beam size,

transverse coherence length, expansion coefficient and radius

of curvature incident on the lens at zL, respectively [see

equations (12), (13) and (14)]. Substituting the lens trans-

mission function introduced in equations (18) and (21) into

equation (17) we can determine the CSD immediately behind

the lens. The beam behind a Gaussian lens with an opening

aperture � can be again discribed by the GSM using (11) with

the modified beam size

1

~��2
L

¼
1

�2
L

þ
1

�2
; ð24Þ

radius of curvature

1

~RRL

¼
1

RL

�
1

f
; ð25Þ

and normalization constant ðS0Þ
1=2

B0=�L (see Fig. 2). As

mentioned earlier, in the thin-lens approximation the coher-

ence length �L = �ðzLÞ is not modified while transmission of

the incident beam through the lens.
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Figure 2
The propagation geometry. The partially coherent source with a source
size 	 and coherence length 
 is positioned at z0 . Partially coherent
radiation with the beam size �L, coherence length �L and radius of
curvature RL is incident on the lens at zL. The beam size ~��L and the
radius of curvature ~RRL are modified by the transmission through the lens.
The beam is focused at the focal position zF with the focus size 	F and
coherence length 
F. The beam parameters at an arbitrary position z1

downstream of the lens are determined.

4 In principle, the transmission function can depend on the frequency of
radiation !. However, for CRLs in the X-ray range for a bandwidth lower than
10�3 the frequency dependence can be neglected (Kohn, 2012).



If the beam size ~��L is reduced due to a finite aperture � of

the lens the global degree of transverse coherence (16) behind

the lens can be defined as

�F ¼
1

1þ 2 ~��L=�L

� 2
h i1=2

: ð26Þ

For partially coherent Gaussian beams this value will be

constant at all positions downstream of the lens.

It is well known that the focusing properties of a lens are

determined by the focal length f. Depending on the sign of f,

the lens acts as a focusing ( f > 0) or a defocusing ( f < 0) optical

element. We consider a lens with the focal length f > 0, which

according to (25) reduces the radius of curvature of the inci-

dent beam ~RRL. If the focal length is smaller than the curvature

of the incident beam, f < RL, then according to (25) the radius

of curvature behind the lens ~RRL is negative and the beam is

focused downstream of the lens (see Fig. 3a). In the opposite

case of f > RL, equation (25) yields a positive radius of

curvature ~RRL behind the lens. The divergence of the beam is

reduced; however, the beam is not focused and a virtual focus

lies upstream from the lens (see Fig. 3b). If f = RL the radius of

curvature behind the lens is infinite, which means that the

beam is collimated (see Fig. 3c).

3.3. Coherence properties of the beam behind the focusing
element

To determine the beam properties in the focal plane one can

apply the general propagation formula (7) to the radiation

immediately behind the lens. However, it is more convenient

to use the optics reciprocity theorem (Born & Wolf, 1999). We

assume that a source is located at the focal position zF and the

beam is characterized by its CSD in the frame of the GSM by

equations (9) and (10), with its source size and coherence

length in the focus given by the parameters 	F and 
F,

respectively. To calculate these parameters we propagate

partially coherent beam from the focal position zF backwards

to the lens position zL using equation (11) and compare it with

the CSD function corresponding to the radiation transmitted

through the lens. The parameters of the focus satisfying this

boundary condition are given by (see Appendix B for details)

	F ¼
~��L

1þ ðZL= ~RRLÞ
2

� �1=2
; ð27Þ


F ¼
�L

1þ ðZL= ~RRLÞ
2

� �1=2
; ð28Þ

where we introduced ZL = 2k ~��2
L�F, which is similar to the

effective distance zeff defined in equation (15).

The distance zFL from the lens to the focus is given by (see

Appendix B for details)

zFL ¼ �
~RRL

1þ ~RRL=ZL

� 2 : ð29Þ

In this model the radius of curvature of the radiation in the

focus is infinitely large and the phase  12ðzÞ term in equation

(11) vanishes. It is readily seen from equations (25) and (29)

that the focal position coincides with the focal length of the

lens, zFL = f, only if the radius of curvature RL incident on the

lens is much larger than the focal length, RL 	 f and ZL 	 f,

that is typically the case for the third-generation X-ray

synchrotron sources.

The depth of focus �f is the region along the optical axis

where the beam size is smaller than the focus size multiplied

by
ffiffiffi
2
p

. It is typically defined through the Rayleigh length for

coherent Gaussian beams (Saleh & Teich, 1991) and can be

extended to partially coherent beams introducing the effective

distance zF
eff = 2k	2

F�F in the focus,

�f ¼ 2zF
eff: ð30Þ

After the position of the focus and transverse coherence

properties in the focus have been obtained, it is possible to

calculate the CSD at any position z1 downstream of the lens

applying equations (11)–(15). In these equations the source

size 	, transverse coherence length at the source 
 and the

global degree of coherence � are replaced by the values 	F, 
F

and �F in the focus from equations (26), (27) and (28). The

distance z from the source to the observation plane is replaced

by z1F = z1 � zF, which is the distance between the observation

plane at z1 and the focus at zF (see Fig. 2). Below, the limits of

a fully coherent or diffraction-limited focus as well as a rather

incoherent focus will be discussed.

4. Diffraction-limited focus

We will consider now a strongly focusing lens, which

substantially increases the flux density in the focus and is

especially interesting for practical applications. According to

equation (27) a small focal size 	F occurs when the denomi-

nator in equation (27) is large. This is equivalent to the

condition that the beam curvature behind the lens ~RRL
 ZL. In

this limit we obtain from equation (27)

	F ¼
zFL

2k ~��L�F

: ð31Þ
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Figure 3
Different focusing geometries. (a) The beam is focused. (b) The
divergence of the beam is reduced, but the beam is not focused. (c)
The beam is collimated.



Here we also used the fact that in the same limit of ~RRL 
 ZL

according to equation (29) the focal distance zFL !�
~RRL and

can be expressed as

zFL ¼
fRL

RL � f
: ð32Þ

Introducing the diffraction-limited focus size 	dl = zFL=ð2k�Þ,
equation (31) can be presented as

	F ¼ 	dl

�

~��L

� �
1

�F

� �
: ð33Þ

The diffraction limit can be equivalently written as 	dl =

�=ð4�NAÞ, where NA = �=zFL is the numerical aperture of

the lens.

Using the concept of the diffraction limit [see equation

(33)], important cases for focusing of partially coherent

radiation can be identified. It can be immediately seen from

equations (24) and (33) that the diffraction limit is the smallest

possible focus size achievable with the lens, since ~��L � � and

�F � 1 by definition. It is also clear from equations (24), (26)

and (33) that the focus is diffraction-limited only if both the

beam size and transverse coherence length of the beam inci-

dent on the lens are much larger than the lens aperture [see

Fig. 4(a)]. The focus size increases if either the beam size or

coherence length of the beam incident on the lens is smaller

than the aperture of the lens [see Figs. 4(b) and 4(c)].

However, there is an important difference between these two

cases. In the first example a highly coherent beam is obtained

in the focus and the blurring of the focus size is due to

diffraction effects of a finite incoming beam [see Fig. 4(b)]. In

the second case the beam in the focus is rather incoherent and

the larger focus is a consequence of a small degree of coher-

ence in the focus [see Fig. 4(c)].

We can also express the focus size in terms of the beam

parameters incident on the lens, which may be important for

practical purposes. Substituting (24) and (26) into (33), we can

obtain

	F ¼ 	dl 1þ
�

�L

� �2

þ 4
�

�L

� �2
" #1=2

: ð34Þ

The focus size as a function of the source size and the lens

aperture is presented in Appendix C. The coherence length in

the focus can be calculated using the ratio 
F=	F = �L= ~��L [see

equations (27), (28) and (24)] and 	F from (34),


F ¼ 	F 1þ
�2

L

�2

� �1=2
�L

�L

� �
: ð35Þ

We demonstrate the obtained results in Fig. 5, where the focal

size 	F (27), coherence length 
F (28) and degree of coherence

�F (26) in the focus are calculated as a function of the ratio

�=�L for different values of the degree of coherence � of the

incoming beam. It can be clearly seen from this figure that a

diffraction-limited focus size is obtained in the limit of a fully

coherent beam. With the reduced coherence of the incident

beam the focal size is increased rapidly. At the same time for

the smaller apertures the diffraction limit can be reached for

beams of any degree of coherence; however, at the expense of

limited photon flux. Even for a highly coherent beam, the

focus is larger than the diffraction limit if the beam size is

smaller than the lens aperture. As can be clearly seen from

Fig. 5(b) the ratio of the transverse coherence length to the

focus size 
F=	F increases rapidly and approaches infinity for

smaller apertures. As the focal size approaches the diffraction
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Figure 4
(a) Focus is diffraction-limited 	F = 	dl if the beam size �L and transverse
coherence length �L are larger than the lens aperture �. (b, c) Focus size
is larger than the diffraction limit if the coherence length (b) or beam size
(c) incident on the lens is smaller than the aperture. (d) For a very large
aperture the focus is a demagnified image of the source.

Figure 5
The normalized focus size 	F=	dl (a), transverse coherence length 
F=	F

(b), and global degree of coherence �F in the focus (c) as functions of the
ratio �=�L. Different values of the global degree of coherence at the
source � = 1.0, 0.7, 0.4 and 0.2 are considered.



limit the degree of coherence approaches the fully coherent

value of �F = 1 at small apertures [see Fig. 5(c)].

A summary of equations obtained in this section to deter-

mine the beam properties in the focus is given in Table 1.

5. Focusing element with a large aperture

If the lens aperture � is significantly larger than the beam size

of the incident radiation �L, the lens only modifies the radius

of curvature. Then the beam size and coherence length in the

focus can be expressed through the same parameters at the

source through simple relations (Turunen & Friberg, 1986)5

	F ¼ M	; 
F ¼ M
; ð36Þ

where

M ¼
f

zL0 � f

����
���� 1þ

z2
eff

ðzL0 � f Þ
2

� 	�1=2

ð37Þ

is the magnification factor [see Fig. 4(d)]. The ratio between

the transverse coherence length and the beam size is constant

everywhere along the optical axis and is determined by the

source parameters 
=	. The same holds for the degree of

transverse coherence �. As an important result we note that in

the frame of the GSM the focus generated by a CRL with a

sufficiently large aperture is just a scaled image of the source.

In the limit of geometrical optics, when diffraction effects

can be neglected and the degree of coherence approaches zero

ð�! 0Þ (Born & Wolf, 1999; Goodman, 2005), the effective

distance vanishes, zeff ! 0, and the magnification factor

simplifies to

M ¼
f

zL0 � f

����
����: ð38Þ

The same limit is approached if the distance zL0 � f 	 zeff,

which is typical for synchrotron sources. A summary of the

equations applicable for the case of large apertures is

presented in Table 2.

6. Focusing of X-ray beams at third-generation
synchrotron sources

We have applied the general approach developed in the

previous sections to simulate the coherence properties of the

focused X-ray beams at the beamline P10 at PETRA III. This

beamline is dedicated to coherence applications such as CXDI

and XPCS and understanding of the coherence properties in

the focus is vital for the success of these experiments.

As an example we analyzed an optical system installed at

this beamline, which consists of three berylium CRLs with

radii of 200 mm, 50 mm and 50 mm and is positioned at a

distance of 85 m downstream of the source (Zozulya et al.,

2012). We considered this set of lenses as a thin lens and

applied equations (20) and (23) to determine the focal length

f = 2.13 m and the effective aperture of the lens due to

absorption �0 = 242 mm. The geometrical size of the 50 mm

lenses is 450 mm.6

We analyzed the coherence properties of such a lens as a

function of the aperture size �A. To determine the beam

properties in the region near the focal plane we have used the

general expression (11). The parameters of the source were

considered for a photon energy of 8 keV and low-� operation

of the synchrotron source (see Table 3). It is immediately seen

that the radiation in the horizontal and vertical directions can

be considered as incoherent and coherent, respectively (see

also Fig. 5). Equation (23) was used to calculate the total

aperture size � of the focusing element including the beam-

defining aperture. Aperture sizes �A (�) of 25 (25) mm and

100 (93) mm were considered in the horizontal and 50 (49) mm

and 150 (128) mm in the vertical direction (see Table 4).

In Figs. 6 and 7 the intensity profile and transverse coher-

ence properties at different distances from the lens around the

focal position in the horizontal and vertical directions are

presented. In the horizontal direction for an aperture size of

25 mm the coherence length is about two times larger than the

beam size and the beam is highly coherent [see Figs. 6(a) and
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Table 1
Coherence properties in the focus of a strongly focusing lens ~RRL 
 ZL

with an arbitrary lens aperture.

Focus size 	F = 	dl½1þ ð�=�LÞ
2
þ 4ð�=�LÞ

2
�
1=2

Diffraction limit 	dl = zFL=ð2k�Þ
Transverse coherence length 
F = 	Fð1þ�2

L=�
2Þ

1=2
ð�L=�LÞ

Focus position zFL = RL f=ðRL � f Þ
Depth of focus �f = 4k	2

F�F

Table 2
Coherence properties in the focus of a lens with an aperture much larger
than the beam size, � 	 �L.

Focus size 	F = M	
Transverse coherence

length

F = M


Focus position zFL = f þM 2ðzF0 � f Þ
Depth of focus �f = 4kM 2	2�
Magnification M = j f=ð f � zL0Þj½1þ ð2k	2�Þ2=ð f � zL0Þ

2
�
�1=2

Table 3
Beam parameters of the PETRA III source (low-�) for a photon energy
of 8 keV (Balewski et al., 2004).

The coherence properties at the source and at a distance of 85 m downstream
of the source are presented (Vartanyants & Singer, 2010).

Horizontal Vertical

Beam size at the source (mm) 36.2 6.3
Transverse coherence length at the source (mm) 0.9 7.7
Beam size at 85 m (mm) 2370 320
Transverse coherence at 85 m (mm) 58 390
Degree of coherence � 0.01 0.52

5 These expressions hold even without the strong lens approximation used
earlier in the paper and can be obtained from equations (27) and (28) by a
straightforward calculation (Singer, 2012).

6 We should note that the geometrical lens size limits the aperture �A.
According to our estimates it corresponds to an r.m.s. width of about 100 mm
(see Appendix A).



6(b)]. The depth of focus is about 10 cm. For a significantly

larger aperture size of 100 mm the focus size and the depth

of focus are smaller and the beam coherence is poor [see

Figs. 6(c) and 6(d)]. In the vertical direction the beam size and

the depth of focus are significantly smaller than for the hori-

zontal direction (note the different scales in Figs. 6 and 7). Due

to a higher degree of coherence at the source in the vertical

direction, highly coherent radiation in the focus can be

achieved with larger apertures. For the aperture size of 50 mm

the coherence length is significantly larger than the beam size

and the beam is fully coherent [see Figs. 7(a) and 7(b)]. Even

for a comparably large aperture of 150 mm the coherence

length substantially exceeds the beam size [see Figs. 7(c)

and 7(d)].

For coherence-based applications the most important

properties of an X-ray lens are the small focus size, increase of

the degree of coherence in the focus and increase in the peak

intensity IPeak = maxfIðx; yÞg. These quantities as functions of

the opening aperture size �A are presented in Fig. 8 for the

horizontal and vertical directions.7 As can be seen in Figs. 8(a)

and 8(b), at the largest apertures both the focus size and

degree of coherence have constant values and the smallest

focus size is obtained. The focus size 	F is increased at smaller

aperture values �A due to diffraction as described in x4. At

the same time the degree of coherence �F reaches its maximum

value close to 1. In the horizontal direction it increases from a

value of 10% with large beam-defining aperture �A to 71%

research papers

12 Singer and Vartanyants � Coherence properties of focused X-ray beams J. Synchrotron Rad. (2014). 21, 5–15

Figure 7
The same as in Fig. 6 in the vertical direction and for the aperture sizes
�A of 50 mm (a), (b), 150 mm (c), (d).

Figure 8
The global degree of coherence (black line) and the focal size (red line) as
functions of the beam-defining aperture size �A in the horizontal (a) and
vertical (b) directions. The dashed line indicates a highly coherent beam
with the coherence length in the focus being twice as large as the r.m.s.
beam size, 
F = 2	F. (c) The increase in the flux density IPeak as a function
of the beam-defining aperture size in the horizontal (blue dashed line)
and vertical (green dotted line) directions.

Figure 6
The intensity profile in the vicinity of the focus as a function of the
propagation distance z1F for the aperture sizes �A of 25 mm (a), 100 mm
(c) in the horizontal direction. The white dashed lines indicate the
coherent part of the beam with a width given by the transverse coherence
length. (b), (d) Line scans of the intensity profile IðxÞ from (a), (c) in the
focal plane at z1F = 0. The shaded region shows the coherent part of the
beam with the width corresponding to the transverse coherence length 
F

in the focal plane.

Table 4
Coherence properties in the focus of the beamline P10 at PETRA III
calculated for different apertures �A in front of the lens.

Horizontal Vertical

Aperture size �A (mm) 25 100 50 150
Total aperture size � (mm) 25 93 49 128
Focus size 	F (mm) 1.4 1.0 0.6 0.3
Transverse coherence length 
F (mm) 3.3 0.6 4.5 0.9
Global degree of coherence �F 0.76 0.30 0.97 0.85
Depth of focus �f (mm) 120 22 25 3.6

7 For this set of lenses, aperture sizes of more than 100 mm are larger than the
geometrical size of the lens and are shown to illustrate the asymptotic
behaviour.



[horizontal dashed line in Fig. 8(a)] for an aperture size of

about 30 mm. This can be considered as a highly coherent

beam with the coherence length being twice the size of the

beam. In the vertical direction the degree of coherence is

higher than 71% for all aperture sizes of the optical system

considered here. The peak intensity in the focus theoretically

can be increased by more than two orders of magnitude in

both directions for large apertures [see Fig. 8(c)]. At the same

time, for the small aperture sizes the amount of the total

transmitted flux is reduced. In this focusing geometry using an

aperture size of 30 mm (H) � 100 mm (V) a highly coherent

beam with a focus size of 1.2 mm (H)� 0.3 mm (V) is expected.

In this case 0.2% of the total flux is transmitted through the

lens and the flux density is increased by three orders of

magnitude.

We have compared the results of our approach with the

measurements of the beam size performed at the coherence

beamline P10 (Zozulya et al., 2012). A transfocator with seven

50 mm berylium CRLs was used at an energy of 13.2 keV. The

beam-defining slits were set to 100 mm in both directions and a

focus size (FWHM) of 2.9 mm (H)� 2.9 mm (V) was observed.

Applying our approach for the same lens parameters (�A =

22) and the estimated source properties at a photon energy of

13.2 keV (Vartanyants & Singer, 2010) yields a theoretical

focus size (FWHM) of 2.4 mm (H) � 1.5 mm (V). Our simu-

lations reproduce well the experimental focus size in the

horizontal direction; however, they are about twice as small as

the measured values in the vertical direction. This can be

attributed to the fact that all optical components at P10 deflect

the beam in the vertical direction and we expect the deviation

of the experimental and theoretical values to be larger in this

direction.

7. Conclusions

We have presented an analytic approach to propagate

partially coherent X-ray beams through focusing elements,

which is based on the results of statistical optics and can

be applied to X-ray beams at third-generation synchrotron

sources. As an example, parabolic compound refractive lenses

were analyzed in detail. The same formalism can also be

applied to Fresnel zone plates and other focusing optics, which

can be treated within the thin-lens approximation. We have

obtained simple equations for the case of a strongly focusing

lens. Since the method is analytical it can be effectively used

to estimate the beam parameters at the experimental station.

Important limiting cases, such as rather coherent and in-

coherent radiation, have been considered, which represent

synchrotron radiation in the vertical and horizontal directions,

respectively. As an example we have performed calculations

for the coherence beamline P10 at the PETRA III storage

ring. We anticipate that our approach can also be applied to

estimate the performance of focused beams at highly coherent

X-ray free-electron laser sources.

APPENDIX A
Edge effects of a beam-defining slit on the coherence
properties in the focus

A potential problem of the application of the Gaussian beam-

defining aperture to the case of synchrotron radiation sources

is the fact that at most beamlines a slit or a pinhole is used,

which has a non-Gaussian transmission function. To under-

stand how significant the edges of such apertures can be, we

performed numerical propagation of the CSD from the lens

with an aperture in the form of a slit with the size D [the case

of the pinhole was considered by Singer & Vartanyants

(2011)]. Equation (7), (8) and (17) were solved numerically

using the following transmission function of the optical

system,

TðuÞ ¼ TSðuÞ exp �
u2

4�2
0

� i
ku2

2f

� �
; ð39Þ

where TSðuÞ = 1 if juj < D/2 and 0 elsewhere. The lens aperture

due to absorption �0 and the focal length of the lens f were the

same as in the main text. The slit transmission function TSðuÞ

was convolved by a Gaussian with a width of 20 mm, to smooth

the hard edges. These simulations were compared with our

analytical approach. The size of the Gaussian aperture �A was

related to the slit size D by a comparison of the intensity

profiles (FWHM) generated by a Gaussian and a rectangular

transmission function. The best match was found for the

condition D = 4:55�A.

In Figs. 9 and 10 the intensity profile and the spectral degree

of coherence in the focus are shown for the same aperture

sizes as in Figs. 6 and 7. For comparison the corresponding

intensity profiles and SDC obtained in numerical simulations

are shown in the same figures. It can be clearly seen that

the beam profile determined through the analytical model

presented in this work coincides well with the results of

numerical simulations. Apart from oscillations in low-intensity

regions, which appear due to diffraction on hard edges of the

slit, the Gaussian model describes well the coherence prop-

erties of the focused beam in the horizontal direction. In the

vertical direction the edge effects are substantial due to a high

coherence, and the GSM slightly overestimates the coherence

length of the beam.

APPENDIX B
Derivation of the focal distance, focus size and
transverse coherence length

To determine the radiation properties in the focus we use the

optics reciprocity theorem. We consider the focus as a GSM

source and the radiation behind the lens as back propagated

from the focus. We have to determine the focus size 	F,

transverse coherence length 
F and distance from the lens to

the focus zFL from the beam size ~��L, coherence length �L and

radius of curvature ~RRL immediately behind the lens. These

parameters are connected through the expressions for the

expansion coefficient �L, (11) and (12),
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~��L ¼ 	F�L; �L ¼ 
F�L; �L ¼ 1þ
zFL

zF
eff

� �2
" #1=2

ð40Þ

and the radius of curvature, (14),

~RRL ¼ �zFL 1þ zF
eff=zFL

� 2
h i

: ð41Þ

To solve this set of equations we rewrite the expansion coef-

ficient �L in terms of the radius of curvature,

�2
L ¼ �

~RRLzFL = zF
eff

� 2
: ð42Þ

Introducing a new variable Z1 = �2
LzF

eff = 2k ~��2
L�F, which can be

calculated from the parameters of the incident radiation and

the lens aperture using equations (24), (26) and (42), we

rewrite

�2
L ¼ �

Z2
1

~RRLzFL

ð43Þ

and

�2
L ¼ 1þ�4

L zFL=Z1ð Þ
2: ð44Þ

Now substituting (43) into (44) we find the distance from the

lens to the focus,

zFL ¼ �
~RRL

1þ ~RRL=Z1

� 2
: ð45Þ

Substituting (45) into (43) we find the expansion coefficient,

�2
L ¼ 1þ Z1= ~RRL

� 2
: ð46Þ

APPENDIX C

Focus size as a function of source size

Here we show that in the strong focusing approximation the

focus size can be given as a convolution of the diffraction limit

	dl and demagnified source size M	, where M is the demag-

nification factor. Substituting the definition of the diffraction

limit 	dl = zFL=ð2k�Þ into (34) we find

	2
F ¼ 	

2
dl þ

zFL

2k�L

� �2

þ
zFL

k�L

� �2

: ð47Þ

Now, using equations (12), (13), (15) and (16) in the far-field

approximation zL0 	 zeff , we find

1

2�L

� �2

þ
1

�

� �2

¼
k	

zL0

� �2

: ð48Þ

The focus size can then be given by

	2
F ¼ 	

2
dl þM2	2; ð49Þ

with the demagnification factor expressed as M = zFL=zL0. In

the strong focusing approximation ZL 	
~RRL using equations

(25) and (29) the demagnification factor can be given as

M ¼
f

f � zL0

����
����: ð50Þ

It is interesting to note that, when the beam is incoherent,

�L 
 �L, and the aperture is larger than the transverse

coherence length, � 	 �L, we find from equation (34) 	F =

zFL=ðk�LÞ [see Figs. 5 and 4(b)]. Under these conditions the

focus size is determined only by the transverse coherence

length of the beam incident on the lens. Rewriting the

condition for the focus size as �L = zFL=ðk	FÞ it can readily be

seen that this case is very similar to the van Cittert–Zernike

theorem (Mandel & Wolf, 1995). The focus can be considered

as a planar incoherent GSM source and the transverse

coherence length at a distance zFL from this source is given by

�L. In fact, the coherence length is demagnified in the focus by

the lens.

research papers

14 Singer and Vartanyants � Coherence properties of focused X-ray beams J. Synchrotron Rad. (2014). 21, 5–15

Figure 9
The intensity profile IðxÞ (a), (c) and modulus of the spectral degree of
coherence j�ð�xÞj (b), (d) in the focal plane in the horizontal direction.
Calculations made for aperture sizes of 25 mm (a), (b) and 100 mm (c), (d)
with a Gaussian aperture (red lines) and a slit (black line) are presented.

Figure 10
The same as in Fig. 9 in the vertical direction for aperture sizes of 50 mm
(a), (b) and 150 mm (c), (d).
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