64 research outputs found

    Spatial access priority mapping (SAPM) with fishers : a quantitative GIS method for participatory planning

    Get PDF
    Spatial management tools, such as marine spatial planning and marine protected areas, are playing an increasingly important role in attempts to improve marine management and accommodate conflicting needs. Robust data are needed to inform decisions among different planning options, and early inclusion of stakeholder involvement is widely regarded as vital for success. One of the biggest stakeholder groups, and the most likely to be adversely impacted by spatial restrictions, is the fishing community. In order to take their priorities into account, planners need to understand spatial variation in their perceived value of the sea. Here a readily accessible, novel method for quantitatively mapping fishers’ spatial access priorities is presented. Spatial access priority mapping, or SAPM, uses only basic functions of standard spreadsheet and GIS software. Unlike the use of remote-sensing data, SAPM actively engages fishers in participatory mapping, documenting rather than inferring their priorities. By so doing, SAPM also facilitates the gathering of other useful data, such as local ecological knowledge. The method was tested and validated in Northern Ireland, where over 100 fishers participated in a semi-structured questionnaire and mapping exercise. The response rate was excellent, 97%, demonstrating fishers’ willingness to be involved. The resultant maps are easily accessible and instantly informative, providing a very clear visual indication of which areas are most important for the fishers. The maps also provide quantitative data, which can be used to analyse the relative impact of different management options on the fishing industry and can be incorporated into planning software, such as MARXAN, to ensure that conservation goals can be met at minimum negative impact to the industry. This research shows how spatial access priority mapping can facilitate the early engagement of fishers and the ready incorporation of their priorities into the decision-making process in a transparent, quantitative way

    A Method for Estimating Marine Habitat Values Based on Fish Guilds, with Comparisons between Sites in the Southern California Bight

    Get PDF
    Habitat valuation is an essential tool for tracking changes in habitat quality and in adjudicating environmental mitigation. All current methods for estimating habitat values of coastal marine sites rely heavily on the opinion of experts or on data variables that can readily be manipulated to influence the outcome. As a result, unbiased, quantitative comparisons between the values of different marine habitats are generally unavailable. We report here on a robust, objective technique for the valuation of marine habitats that makes use of data that are commonly gathered in surveys of marine fish populations: density, fidelity, and mean size. To insure comparability across habitats, these variables are assessed for guilds of fishes, rather than for single species. The product of the three guild-based parameters is transformed to its square root and then summed across all guilds in the habitat, yielding a single measure of habitat value for each site surveyed. To demonstrate the usefulness of this approach, we have analyzed data from existing surveys of 13 marine sites in the Southern California Bight, encompassing 98 fish species from 23 guilds. For seven of the sites, it was possible to develop estimates of the confidence interval of the habitat valuation, using a resampling technique. Variance estimates from resampling in one habitat mirrored those derived from analysis of annual variation. The resultant ranking of habitat types was: kelp beds \u3e shallow artificial reefs \u3e wetlands \u3e protected shallow waters (soft bottom) \u3e shallow open coastal sand (depth \u3c30 m) \u3e soft bottom habitat on the continental shelf (30 m \u3c depth \u3c200 m) \u3e soft bottom habitat on the continental slope (depth \u3e200 m). Although our data sets were restricted to Southern California, similar data could be obtained from any reasonably well-studied marine environment. The guild-based valuation technique may, therefore, be broadly applicable to the analysis of other marine ecosystems
    • …
    corecore