193 research outputs found

    Social media in undergraduate medical education: A systematic review

    Get PDF
    Introduction There are over 3.81 billion worldwide active social media (SoMe) users. SoMe are ubiquitous in medical education, with roles across undergraduate programmes, including professionalism, blended learning, well being and mentoring. Previous systematic reviews took place before recent explosions in SoMe popularity and revealed a paucity of high-quality empirical studies assessing its effectiveness in medical education. This review aimed to synthesise evidence regarding SoMe interventions in undergraduate medical education, to identify features associated with positive and negative outcomes. Methods Authors searched 31 key terms through seven databases, in addition to references, citation and hand searching, between 16 June and 16 July 2020. Studies describing SoMe interventions and research on exposure to existing SoMe were included. Title, abstract and full paper screening were undertaken independently by two reviewers. Included papers were assessed for methodological quality using the Medical Education Research Study Quality Instrument (MERSQI) and/or the Standards for Reporting Qualitative Research (SRQR) instrument. Extracted data were synthesised using narrative synthesis. Results 112 studies from 26 countries met inclusion criteria. Methodological quality of included studies had not significantly improved since 2013. Engagement and satisfaction with SoMe platforms in medical education are described. Students felt SoMe flattened hierarchies and improved communication with educators. SoMe use was associated with improvement in objective knowledge assessment scores and self-reported clinical and professional performance, however evidence for long term knowledge retention was limited. SoMe use was occasionally linked to adverse impacts upon mental and physical health. Professionalism was heavily investigated and considered important, though generally negative correlations between SoMe use and medical professionalism may exist. Conclusions Social media is enjoyable for students who may improve short term knowledge retention and can aid communication between learners and educators. However, higher-quality study is required to identify longer-term impact upon knowledge and skills, provide clarification on professionalism standards and protect against harms

    Controlled sulfur-based engineering confers mouldability to phosphorothioate antisense oligonucleotides

    Get PDF
    Phosphorothioates (PS) have proven their effectiveness in the area of therapeutic oligonucleotides with applications spanning from cancer treatment to neurodegenerative disorders. Initially, PS substitution was introduced for the antisense oligonucleotides (PS ASOs) because it confers an increased nuclease resistance meanwhile ameliorates cellular uptake and in-vivo bioavailability. Thus, PS oligonucleotides have been elevated to a fundamental asset in the realm of gene silencing therapeutic methodologies. But, despite their wide use, little is known on the possibly different structural changes PS-substitutions may provoke in DNA·RNA hybrids. Additionally, scarce information and significant controversy exists on the role of phosphorothioate chirality in modulating PS properties. Here, through comprehensive computational investigations and experimental measurements, we shed light on the impact of PS chirality in DNA-based antisense oligonucleotides; how the different phosphorothioate diastereomers impact DNA topology, stability and flexibility to ultimately disclose pro-Sp S and pro-Rp S roles at the catalytic core of DNA Exonuclease and Human Ribonuclease H; two major obstacles in ASOs-based therapies. Altogether, our results provide full-atom and mechanistic insights on the structural aberrations PS-substitutions provoke and explain the origin of nuclease resistance PS-linkages confer to DNA·RNA hybrids; crucial information to improve current ASOs-based therapies.© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research

    Synthesis and characterisation of ruthenium complexes containing a pendent catechol ring

    Get PDF
    A series of [Ru(bipy)₂L]⁺ and [Ru(phen)₂L]⁺ complexes where L is 2-[5-(3,4-dimethoxyphenyl)-4H-1,2,4-triazol-3-yl]pyridine (HL1) and 4-(5-pyridin-2-yl-4H-1,2,4-triazol-3-yl)benzene-1,2-diol (HL2) are reported. The compounds obtained have been characterised using X-ray crystallography, NMR, UV/Vis and emission spectroscopies. Partial deuteriation is used to determine the nature of the emitting state and to simplify the NMR spectra. The acid-base properties of the compounds are also investigated. The electronic structures of [Ru(bipy)₂L1]⁺ and Ru(bipy)₂HL1]²⁺ are examined using ZINDO. Electro and spectroelectrochemical studies on [Ru(bipy)₂(L2)]⁺ suggest that proton transfer between the catechol and triazole moieties on L2 takes place upon oxidation of the L2 ligand

    Psychometric Validation of the Sensory Experiences Questionnaire

    Get PDF
    We evaluated the psychometric properties of the Sensory Experiences Questionnaire (Version 1; Baranek, David, Poe, Stone, & Watson 2006), a brief caregiver questionnaire for young children with autismand developmental delays used to identify sensory processing patterns in the context of daily activities

    Variation in optineurin (OPTN) allele frequencies between and within populations

    Get PDF
    PURPOSE: To evaluate the extent to which mutations in the optineurin (OPTN) glaucoma gene play a role in glaucoma in different populations. METHODS: Case-controlled study of OPTN sequence variants in individuals with or without glaucoma in populations of different ancestral origins and evaluate previous OPTN reports. We analyzed 314 subjects with African, Asian, Caucasian and Hispanic ancestries included 229 cases of primary open-angle glaucoma, 51 cases of juvenile-onset open-angle glaucoma, 33 cases of normal tension glaucoma, and 371 controls. Polymerase chain reaction-amplified OPTN coding exons were resequenced and case frequencies were compared to frequencies in controls matched for ancestry. RESULTS: The E50K sequence variant was identified in one individual from Chile with normal tension glaucoma, and the 691_692insAG variant was found in one Ashkenazi Jewish individual from Russia. The R545Q variant was found in two Asian individuals with primary open-angle glaucoma; one of Filipino ancestry and one of Korean ancestry. In addition to presenting OPTN allele frequencies for Caucasian and Asian populations that have been the subject of previous reports, we also present information for populations of Hispanic and black African ancestries. CONCLUSIONS: Our study contributes additional evidence to support the previously reported association of the OPTN E50K mutation with glaucoma. After finding an additional 691_692insAG OPTN variant, we can still only conclude that this variant is rare. Combined analysis of our data with data from more than a dozen other studies indicates no association of R545Q with glaucoma in most populations. Those same studies disagree in their conclusions regarding the role of M98K in glaucoma. Our analysis of the combined data provides statistically significant evidence of association of M98K with normal tension glaucoma in Asian populations, but not in Caucasian populations; however, the validity of this conclusion is questionable because of large differences in allele frequencies between and within populations. It is currently not possible to tell how much of the underlying cause of the allele frequency difference is attributable to demographic, technical, or ascertainment differences among the studies

    Unexpected origins of the enhanced pairing affinity of 2′-fluoro-modified RNA

    Get PDF
    Various chemical modifications are currently being evaluated for improving the efficacy of short interfering RNA (siRNA) duplexes as antisense agents for gene silencing in vivo. Among the 2′-ribose modifications assessed to date, 2′deoxy-2′-fluoro-RNA (2′-F-RNA) has unique properties for RNA interference (RNAi) applications. Thus, 2′-F-modified nucleotides are well tolerated in the guide (antisense) and passenger (sense) siRNA strands and the corresponding duplexes lack immunostimulatory effects, enhance nuclease resistance and display improved efficacy in vitro and in vivo compared with unmodified siRNAs. To identify potential origins of the distinct behaviors of RNA and 2′-F-RNA we carried out thermodynamic and X-ray crystallographic analyses of fully and partially 2′-F-modified RNAs. Surprisingly, we found that the increased pairing affinity of 2′-F-RNA relative to RNA is not, as commonly assumed, the result of a favorable entropic contribution (‘conformational preorganization’), but instead primarily based on enthalpy. Crystal structures at high resolution and osmotic stress demonstrate that the 2′-F-RNA duplex is less hydrated than the RNA duplex. The enthalpy-driven, higher stability of the former hints at the possibility that the 2′-substituent, in addition to its important function in sculpting RNA conformation, plays an underappreciated role in modulating Watson–Crick base pairing strength and potentially π–π stacking interactions

    DNA from Plant leaf Extracts: A Review for Emerging and Promising Novel Green Corrosion Inhibitors.

    Get PDF
    With growing global awareness and concern for environmental protection through the use of less hazardous and environmentally-friendly extracts of plant origin, there has been a plethora of green corrosion inhibitors research with far reaching contributions to the science of corrosion prevention and control. Attention has increasingly turned towards green corrosion inhibitors, compounds of natural origin with anti-oxidant activity towards metals and their alloys. Green inhibitors have been investigated for their corrosion and adsorption properties with good results. The findings from these research works provide evidence of the adsorption behavior of green inhibitors which was confirmed by the adsorption isotherms that were proposed. Adsorption is the first step of any surface reaction and since corrosion is a surface phenomenon the effectiveness of green corrosion inhibitors is related to their ability to adsorb on metal surfaces. This review proposes the potential of plant dna as an emerging and promising novel inhibitor for mild steel. It begins with a list of plants that have been used in studies to determine corrosion inhibition properties and moves on to establish the adsorption behavior of bio macromolecules; protein, polysaccharides (chitosan) and dna. It reviews studies and investigation of dna interaction and adsorption on inorganic surfaces before focusing on the use of salmon (fish) sperm dna and calf thymus gland dna as green corrosion inhibitors for mild steel. It concludes that plant dna is a promising candidate for green corrosion inhibitor given the similarity between the plant and animal dna structure and function, and the fact that the use of plant is more environmentally sustainable than animal-based produc

    Sequence-Dependent Fluorescence of Cyanine Dyes on Microarrays

    Get PDF
    Cy3 and Cy5 are among the most commonly used oligonucleotide labeling molecules. Studies of nucleic acid structure and dynamics use these dyes, and they are ubiquitous in microarray experiments. They are sensitive to their environment and have higher quantum yield when bound to DNA. The fluorescent intensity of terminal cyanine dyes is also known to be significantly dependent on the base sequence of the oligonucleotide. We have developed a very precise and high-throughput method to evaluate the sequence dependence of oligonucleotide labeling dyes using microarrays and have applied the method to Cy3 and Cy5. We used light-directed in-situ synthesis of terminally-labeled microarrays to determine the fluorescence intensity of each dye on all 1024 possible 5′-labeled 5-mers. Their intensity is sensitive to all five bases. Their fluorescence is higher with 5′ guanines, and adenines in subsequent positions. Cytosine suppresses fluorescence. Intensity falls by half over the range of all 5-mers for Cy3, and two-thirds for Cy5. Labeling with 5′-biotin-streptavidin-Cy3/-Cy5 gives a completely different sequence dependence and greatly reduces fluorescence compared with direct terminal labeling

    Serotype-specific mortality from invasive Streptococcus pneumoniae disease revisited

    Get PDF
    BACKGROUND: Invasive infection with Streptococcus pneumoniae (pneumococci) causes significant morbidity and mortality. Case series and experimental data have shown that the capsular serotype is involved in the pathogenesis and a determinant of disease outcome. METHODS: Retrospective review of 464 cases of invasive disease among adults diagnosed between 1990 and 2001. Multivariate Cox proportional hazard analysis. RESULTS: After adjustment for other markers of disease severity, we found that infection with serotype 3 was associated with an increased relative risk (RR) of death of 2.54 (95% confidence interval (CI): 1.22–5.27), whereas infection with serotype 1 was associated with a decreased risk of death (RR 0.23 (95% CI, 0.06–0.97)). Additionally, older age, relative leucopenia and relative hypothermia were independent predictors of mortality. CONCLUSION: Our study shows that capsular serotypes independently influenced the outcome from invasive pneumococcal disease. The limitations of the current polysaccharide pneumococcal vaccine warrant the development of alternative vaccines. We suggest that the virulence of pneumococcal serotypes should be considered in the design of novel vaccines
    corecore