18 research outputs found

    Tissue-infiltrating macrophages mediate an exosome-based metabolic reprogramming upon DNA damage

    Get PDF
    DNA damage and metabolic disorders are intimately linked with premature disease onset but the underlying mechanisms remain poorly understood. Here, we show that persistent DNA damage accumulation in tissue-infiltrating macrophages carrying an ERCC1-XPF DNA repair defect (Er1(F/-)) triggers Golgi dispersal, dilation of endoplasmic reticulum, autophagy and exosome biogenesis leading to the secretion of extracellular vesicles (EVs) in vivo and ex vivo. Macrophage-derived EVs accumulate in Er1(F/-) animal sera and are secreted in macrophage media after DNA damage. The Er1(F/-) EV cargo is taken up by recipient cells leading to an increase in insulin-independent glucose transporter levels, enhanced cellular glucose uptake, higher cellular oxygen consumption rate and greater tolerance to glucose challenge in mice. We find that high glucose in EV-targeted cells triggers pro-inflammatory stimuli via mTOR activation. This, in turn, establishes chronic inflammation and tissue pathology in mice with important ramifications for DNA repair-deficient, progeroid syndromes and aging

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity : a review

    Get PDF
    Ticks, triatomines, mosquitoes and sand flies comprise a large number of haematophagous arthropods considered vectors of human infectious diseases. While consuming blood to obtain the nutrients necessary to carry on life functions, these insects can transmit pathogenic microorganisms to the vertebrate host. Among the molecules related to the blood-feeding habit, proteases play an essential role. In this review, we provide a panorama of proteases from arthropod vectors involved in haematophagy, in digestion, in egg development and in immunity. As these molecules act in central biological processes, proteases from haematophagous vectors of infectious diseases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control

    Improved reference genome of Aedes aegypti informs arbovirus vector control

    Get PDF
    Female Aedes aegypti mosquitoes infect more than 400 million people each year with dangerous viral pathogens including dengue, yellow fever, Zika and chikungunya. Progress in understanding the biology of mosquitoes and developing the tools to fight them has been slowed by the lack of a high-quality genome assembly. Here we combine diverse technologies to produce the markedly improved, fully re-annotated AaegL5 genome assembly, and demonstrate how it accelerates mosquito science. We anchored physical and cytogenetic maps, doubled the number of known chemosensory ionotropic receptors that guide mosquitoes to human hosts and egg-laying sites, provided further insight into the size and composition of the sex-determining M locus, and revealed copy-number variation among glutathione S-transferase genes that are important for insecticide resistance. Using high-resolution quantitative trait locus and population genomic analyses, we mapped new candidates for dengue vector competence and insecticide resistance. AaegL5 will catalyse new biological insights and intervention strategies to fight this deadly disease vector

    Proteases of haematophagous arthropod vectors are involved in blood-feeding, yolk formation and immunity - a review

    Full text link

    Homeobox gene involvement in normal hematopoiesis and in the pathogenesis of childhood Leukemias

    No full text
    Homeobox (HOX) genes are a superfamily of highly conserved genes with essential functions in many aspects of mammalian development. Their expression is tightly regulated throughout the duration of definitive hematopoiesis, so the pathogenetic mechanism that leads to leukemia suggests that malignant transformation is directly intertwined with the deregulation of HOX gene expression. Even though HOX gene involvement has been reviewed extensively in adult leukemias, childhood leukemias have received much less attention and mainly in the context of leukemias harboring MLL (mixed-lineage leukemia) gene translocations. In recent years, scientific evidence has highlighted HOX gene involvement in the development of other subtypes of childhood leukemias and added HOX gene family members that were previously unrelated to the pathogenesis of childhood leukemia. This has significant implications when considering both the risk stratification of pediatric patients and potential targets for successful therapy. Through the identification of HOX target genes, their resulting interactions, and the cognate signaling pathways, we hope to gain a better understanding of the molecular mechanism(s) underlying the ectopic activation of these genes in childhood leukemias and subsequently to reveal new molecular targets for successful therapy in cases of poor prognosis or resistant disease. © 2017 by Begell House, Inc

    The ideological frame of the genetic basis of cancer: The important role of mirnas

    No full text
    The elucidation of the genetic basis of cancer is the result of the research conducted since the beginning of the previous century, which peaked during the decades of 1960s and 1970s. It has been achieved through two different but convergent routes: the first includes the study of oncogenic viruses in rodents and birds and the second includes the use of chemical carcinogens in cells or in animal model systems (mice). Within this framework, the identification of genes that present mutations, alterations in expression levels, and epigenetic modifications has been facilitated through the development of animal carcinogenesis models. One of these models is the well-characterized mouse multistage skin cancer system discussed in this review. In addition, recent evidence shows the great significance that cancer stem cells seem to have in the emergence and progression of carcinogenesis. Finally, herein we discuss the critical role that miRNAs have emerged to play in cancer progression. miRNAs emerged as molecules with an impact on most cancer-related cellular processes, involving cell proliferation, cell death (apoptosis), angiogenesis, migration/motility,and rearrangement of the cytoskeleton. Their discovery has given rise to studies with a focus on miRNAs as key players in crucial oncogenesis-related processes and thus as potential targets in cancer therapeutics. © 2017 by Begell House, Inc

    The COVID‑19 pandemic as a scientific and social challenge in the 21st century

    No full text
    The coronavirus disease-2019 (coVid-19) pandemic, caused by the new coronavirus SarS-coV-2, has spread around the globe with unprecedented consequences for the health of millions of people. While the pandemic is still in progress, with new incidents being reported every day, the resilience of the global society is constantly being challenged. under these circumstances, the future seems uncertain. SarS-coV-2 coronavirus has spread panic among civilians and insecurity at all socio-political and economic levels, dramatically disrupting everyday life, global economy, international travel and trade. The disease has also been linked to the onset of depression in many individuals due to the extreme restriction measures that have been taken for the prevention of the rapid spreading of coVid-19. First, the socio-economic, political and psychological implications of the coVid-19 pandemic were explored. Substantial evidence is provided for the consequences of the pandemic on all aspects of everyday life, while at the same time we unravel the role and the pursuits of national regimes during this unforeseen situation. The second goal of this review is related to the scientific aspect of the pandemic. Hence, we explain why SarS-coV-2 is not a so-called ‘invisible enemy’, and also attempt to give insight regarding the origin of the virus, in an effort to reject the conspiracy theories that have arisen during the pandemic. Finally, rational strategies were investigated for successful vaccine development. We are optimistic that this review will complement the knowledge of specialized scientists and inform non‑specialized readers on basic scientific questions, and also on the social and economic implications of the coVid-19 pandemic. © 2020 Spandidos Publications. All rights reserved

    Article bromamine T (BAT) exerts stronger anti-cancer properties than taurine (tau)

    No full text
    Background: Taurine (Tau) ameliorates cancer pathogenesis. Researchers have focused on the functional properties of bromamine T (BAT), a stable active bromine molecule. Both N-bromotaurine (TauNHBr) and BAT exert potent anti-inflammatory properties, but the landscape remains obscure concerning the anti-cancer effect of BAT. Methods: We used Crystal Violet, colony formation, flow cytometry and Western blot experiments to evaluate the effect of BAT and Tau on the apoptosis and autophagy of cancer cells. Xenograft experiments were used to determine the in vivo cytotoxicity of either agent. Results: We demonstrated that both BAT and Tau inhibited the growth of human colon, breast, cervical and skin cancer cell lines. Among them, BAT exerted the greatest cytotoxic effect on both RKO and MDA-MB-468 cells. In particular, BAT increased the phosphorylation of c-Jun N-terminal kinases (JNK12 ), p38 mitogen-activated protein kinase (MAPK), and extracellular-signal-regulated kinases (ERK12 ), thereby inducing mitochondrial apoptosis and autophagy in RKO cells. In contrast, Tau exerted its cytotoxic effect by upregulating JNK12 forms, thus triggering mitochondrial apoptosis in RKO cells. Accordingly, colon cancer growth was impaired in vivo. Conclusions: BAT and Tau exerted their anti-tumor properties through the induction of (i) mitochondrial apoptosis, (ii) the MAPK family, and iii) autophagy, providing novel anti-cancer therapeutic modalities. © 2021 by the authors. Licensee MDPI, Basel, Switzerland
    corecore