114 research outputs found

    Electroweak phase transitions with BSM fermions

    Get PDF
    We study the impact of additional beyond-the-Standard Model (BSM) fermions, charged under the Standard Model (SM) SU(2)L_L ⊗ U(1)Y_Y gauge group, on the electroweak phase transition (EWPT) in a 2-Higgs-Doublet-Model (2HDM) of type II. We find that the strength of the EWPT can be enhanced by about 40% compared to the default 2HDM. Therefore, additional light fermions are a useful tool to weaken the tension between increasing mass constraints on BSM scalars and the requirement of additional light scalar degrees of freedom to accommodate a strong first order EWPT. The findings are of particular interest for a variety of (non-minimal) split supersymmetry scenarios which necessarily introduce additional light fermion degrees of freedom

    Singlet extended standard model in the context of split supersymmetry

    Get PDF
    We consider a low-energy effective theory of the next-to-minimal supersymmetric Standard Model by decoupling all scalar states except one Higgs doublet and the complex gauge singlet. The mass spectrum of the resulting singlet extended Standard Model is calculated from two different perspectives: (i) using a matching of the scalar sectors at next-to-leading order and (ii) using the simplified-model approach of calculating the masses in the effective theory at fixed order at the weak scale ignoring any connection to the full theory. Significant deviations between the two methods are found not only in the scalar sector, but also properties of the additional fermions can be very different. Thus, only a small part of the parameter space of the simplified model can be embedded in a well-motivated supersymmetry framework

    The O(αt+αλ+ακ)2{\cal O}(\alpha_t+\alpha_\lambda+\alpha_\kappa)^2 Correction to the ρ\rho Parameter and its Effect on the W Boson Mass Calculation in the Complex NMSSM

    Full text link
    We present the prediction of the electroweak ρ\rho parameter and the WW boson mass in the CP-violating Next-to-Minimal Supersymmetric extension of the Standard Model (NMSSM) at the two-loop order. The ρ\rho parameter is calculated at the full one-loop and leading and sub-leading two-loop order O(α+αtαs+(αt+αλ+ακ)2)\mathcal{O}(\alpha + \alpha_t\alpha_s + \left(\alpha_t+\alpha_\lambda+\alpha_\kappa\right)^2). The new Δρ\Delta \rho prediction is incorporated into a prediction of MWM_W via a full supersymmetric (SUSY) one-loop calculation of Δr\Delta r. Furthermore, we include all known state-of-the-art SM higher-order corrections to Δr\Delta r. By comparing results for Δρ\Delta \rho obtained using on-shell (OS) and DR\overline{\mathrm{DR}} renormalization conditions in the top/stop sector, we find that the scheme uncertainty is reduced at one-loop order by 55%, at two-loop O(αsαt)\mathcal{O}(\alpha_s\alpha_t) by 22%, and at two-loop O(αt+ακ+αλ)2\mathcal{O}(\alpha_t+\alpha_\kappa+\alpha_\lambda)^2 by 16%, respectively. The influence of the two-loop results on the MWM_W mass prediction is found to be sub-leading. The new calculation is made public in the computer program NMSSMCALC\mathrm{\tt NMSSMCALC}. We perform an extensive comparison in the WW-mass, Higgs boson mass and the muon anomalous magnetic moment prediction between our calculation and three other publicly available tools and find very good agreement provided that the input parameters and renormalization scales are treated in the same way. Finally, we study the impact of the CP-violating phases on the WW-mass prediction which is found to be smaller than the overall size of the SUSY corrections

    A K=3 two-quasiparticle isomer in 98^{98}Sr

    Get PDF
    The decay of on-line mass-separated 98 Rb to 98 Sr is studied by γ spectroscopy. The revised decay scheme adds further evidence of the coexistence of very different shapes in 98 Sr . A set of levels is proposed to originate from particle-hole pair excitations across the Z = 40 spherical gap in analogy with 96 Sr . A deformed K = 3 band with probable even parity is built on a 7.1-ns isomer at 1838 keV. It is interpreted as a two-quasineutron excitation in accordance with a quantum Monte Carlo pairing calculation based on a deformed shell model. Configurations of the calculated lowest-lying two-quasiparticle levels confirm the importance of the [404]9/2 neutron orbital at the largest deformations in the neutron-rich A ≃ 100 region

    Hemorrhage associated with hepatic artery pseudoaneurysms after regional chemotherapy with floxuridine: case report

    Get PDF
    Pseudoaneurysms of the hepatic artery are a rare complication in patients with primary or secondary liver tumors treated with intra-arterial chemotherapy. We present two patients who developed this complication after placement of a catheter system into the gastroduodenal artery and initiation of regional chemotherapy with floxuridine. Diagnosis was made after symptomatic bleeding occurred, necessitating emergency angiography with coil embolization. Pseudoaneurysms usually occur after mechanical damage of the vessel wall, but the chemical toxicity of floxuridine may add to the development of vascular impairment

    Impact of renal impairment on atrial fibrillation: ESC-EHRA EORP-AF Long-Term General Registry

    Get PDF
    Background: Atrial fibrillation (AF) and renal impairment share a bidirectional relationship with important pathophysiological interactions. We evaluated the impact of renal impairment in a contemporary cohort of patients with AF. Methods: We utilised the ESC-EHRA EORP-AF Long-Term General Registry. Outcomes were analysed according to renal function by CKD-EPI equation. The primary endpoint was a composite of thromboembolism, major bleeding, acute coronary syndrome and all-cause death. Secondary endpoints were each of these separately including ischaemic stroke, haemorrhagic event, intracranial haemorrhage, cardiovascular death and hospital admission. Results: A total of 9306 patients were included. The distribution of patients with no, mild, moderate and severe renal impairment at baseline were 16.9%, 49.3%, 30% and 3.8%, respectively. AF patients with impaired renal function were older, more likely to be females, had worse cardiac imaging parameters and multiple comorbidities. Among patients with an indication for anticoagulation, prescription of these agents was reduced in those with severe renal impairment, p <.001. Over 24 months, impaired renal function was associated with significantly greater incidence of the primary composite outcome and all secondary outcomes. Multivariable Cox regression analysis demonstrated an inverse relationship between eGFR and the primary outcome (HR 1.07 [95% CI, 1.01–1.14] per 10 ml/min/1.73 m2 decrease), that was most notable in patients with eGFR <30 ml/min/1.73 m2 (HR 2.21 [95% CI, 1.23–3.99] compared to eGFR ≥90 ml/min/1.73 m2). Conclusion: A significant proportion of patients with AF suffer from concomitant renal impairment which impacts their overall management. Furthermore, renal impairment is an independent predictor of major adverse events including thromboembolism, major bleeding, acute coronary syndrome and all-cause death in patients with AF

    Clinical complexity and impact of the ABC (Atrial fibrillation Better Care) pathway in patients with atrial fibrillation: a report from the ESC-EHRA EURObservational Research Programme in AF General Long-Term Registry

    Get PDF
    Background: Clinical complexity is increasingly prevalent among patients with atrial fibrillation (AF). The ‘Atrial fibrillation Better Care’ (ABC) pathway approach has been proposed to streamline a more holistic and integrated approach to AF care; however, there are limited data on its usefulness among clinically complex patients. We aim to determine the impact of ABC pathway in a contemporary cohort of clinically complex AF patients. Methods: From the ESC-EHRA EORP-AF General Long-Term Registry, we analysed clinically complex AF patients, defined as the presence of frailty, multimorbidity and/or polypharmacy. A K-medoids cluster analysis was performed to identify different groups of clinical complexity. The impact of an ABC-adherent approach on major outcomes was analysed through Cox-regression analyses and delay of event (DoE) analyses. Results: Among 9966 AF patients included, 8289 (83.1%) were clinically complex. Adherence to the ABC pathway in the clinically complex group reduced the risk of all-cause death (adjusted HR [aHR]: 0.72, 95%CI 0.58–0.91), major adverse cardiovascular events (MACEs; aHR: 0.68, 95%CI 0.52–0.87) and composite outcome (aHR: 0.70, 95%CI: 0.58–0.85). Adherence to the ABC pathway was associated with a significant reduction in the risk of death (aHR: 0.74, 95%CI 0.56–0.98) and composite outcome (aHR: 0.76, 95%CI 0.60–0.96) also in the high-complexity cluster; similar trends were observed for MACEs. In DoE analyses, an ABC-adherent approach resulted in significant gains in event-free survival for all the outcomes investigated in clinically complex patients. Based on absolute risk reduction at 1 year of follow-up, the number needed to treat for ABC pathway adherence was 24 for all-cause death, 31 for MACEs and 20 for the composite outcome. Conclusions: An ABC-adherent approach reduces the risk of major outcomes in clinically complex AF patients. Ensuring adherence to the ABC pathway is essential to improve clinical outcomes among clinically complex AF patients

    Discovery of Cesium, Lanthanum, Praseodymium and Promethium Isotopes

    Full text link
    Currently, forty-one cesium, thirty-five lanthanum, thirty-two praseodymium, and thirty-one promethium, isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.Comment: To be published in At. Data. Nucl. Data Table
    corecore