272 research outputs found

    Large-scale Oscillation of Structure-Related DNA Sequence Features in Human Chromosome 21

    Full text link
    Human chromosome 21 is the only chromosome in human genome that exhibits oscillation of (G+C)-content of cycle length of hundreds kilobases (500 kb near the right telomere). We aim at establishing the existence of similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi-/tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10/11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting/unwinding, stiffness, and a putative tendency for nucleosome formation.Comment: submitted to Physical Review

    Stress-induced modulation of endocannabinoid signaling leads to delayed strengthening of synaptic connectivity in the amygdala

    Get PDF
    none11siopenYasmin, F.; Colangeli, R.; Morena, M.; Filipski, S.; van der Stelt, M.; Pittman, Q.J.; Hillard, C.J.; Campbell Teskey, G.; McEwen, B.S.; Hill, M.N.; Chattarji, S.Yasmin, F.; Colangeli, R.; Morena, M.; Filipski, S.; van der Stelt, M.; Pittman, Q. J.; Hillard, C. J.; Campbell Teskey, G.; Mcewen, B. S.; Hill, M. N.; Chattarji, S

    The Early Apoptotic DNA Fragmentation Targets a Small Number of Specific Open Chromatin Regions

    Get PDF
    We report here that early apoptotic DNA fragmentation, as obtained by using an entirely new approach, is the result of an attack at a small number of specific open chromatin regions of interphase nuclei. This was demonstrated as follows: (i) chicken liver was excised and kept in sterile tubes for 1 to 3 hours at 37°C; (ii) this induced apoptosis (possibly because of oxygen deprivation), as shown by the electrophoretic nucleosomal ladder produced by DNA preparations; (iii) low molecular-weight DNA fragments (∼200 bp) were cloned, sequenced, and shown to derive predominantly from genes and surrounding 100 kb regions; (iv) a few hundred cuts were produced, very often involving the same chromosomal sites; (v) at comparable DNA degradation levels, micrococcal nuclease (MNase) also showed a general preference for genes and surrounding regions, but MNase cuts were located at sites that were quite distinct from, and less specific than, those cut by apoptosis. In conclusion, the approach presented here, which is the mildest and least intrusive approach, identifies a preferred accessibility landscape in interphase chromatin

    Minimum Criteria for DNA Damage-Induced Phase Advances in Circadian Rhythms

    Get PDF
    Robust oscillatory behaviors are common features of circadian and cell cycle rhythms. These cyclic processes, however, behave distinctively in terms of their periods and phases in response to external influences such as light, temperature, nutrients, etc. Nevertheless, several links have been found between these two oscillators. Cell division cycles gated by the circadian clock have been observed since the late 1950s. On the other hand, ionizing radiation (IR) treatments cause cells to undergo a DNA damage response, which leads to phase shifts (mostly advances) in circadian rhythms. Circadian gating of the cell cycle can be attributed to the cell cycle inhibitor kinase Wee1 (which is regulated by the heterodimeric circadian clock transcription factor, BMAL1/CLK), and possibly in conjunction with other cell cycle components that are known to be regulated by the circadian clock (i.e., c-Myc and cyclin D1). It has also been shown that DNA damage-induced activation of the cell cycle regulator, Chk2, leads to phosphorylation and destruction of a circadian clock component (i.e., PER1 in Mus or FRQ in Neurospora crassa). However, the molecular mechanism underlying how DNA damage causes predominantly phase advances in the circadian clock remains unknown. In order to address this question, we employ mathematical modeling to simulate different phase response curves (PRCs) from either dexamethasone (Dex) or IR treatment experiments. Dex is known to synchronize circadian rhythms in cell culture and may generate both phase advances and delays. We observe unique phase responses with minimum delays of the circadian clock upon DNA damage when two criteria are met: (1) existence of an autocatalytic positive feedback mechanism in addition to the time-delayed negative feedback loop in the clock system and (2) Chk2-dependent phosphorylation and degradation of PERs that are not bound to BMAL1/CLK

    Shifting patterns of natural variation in the nuclear genome of caenorhabditis elegans

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genome wide analysis of variation within a species can reveal the evolution of fundamental biological processes such as mutation, recombination, and natural selection. We compare genome wide sequence differences between two independent isolates of the nematode <it>Caenorhabditis elegans </it>(CB4856 and CB4858) and the reference genome (N2).</p> <p>Results</p> <p>The base substitution pattern when comparing N2 against CB4858 reveals a transition over transversion bias (1.32:1) that is not present in CB4856. In CB4856, there is a significant bias in the direction of base substitution. The frequency of A or T bases in N2 that are G or C bases in CB4856 outnumber the opposite frequencies for transitions as well as transversions. These differences were not observed in the N2/CB4858 comparison. Similarly, we observed a strong bias for deletions over insertions in CB4856 (1.44: 1) that is not present in CB4858. In both CB4856 and CB4858, there is a significant correlation between SNP rate and recombination rate on the autosomes but not on the X chromosome. Furthermore, we identified numerous significant hotspots of variation in the CB4856-N2 comparison.</p> <p>In both CB4856 and CB4858, based on a measure of the strength of selection (k<sub>a</sub>/k<sub>s</sub>), all the chromosomes are under negative selection and in CB4856, there is no difference in the strength of natural selection in either the autosomes versus X or between any of the chromosomes. By contrast, in CB4858, k<sub>a</sub>/k<sub>s </sub>values are smaller in the autosomes than in the X chromosome. In addition, in CB4858, k<sub>a</sub>/k<sub>s </sub>values differ between chromosomes.</p> <p>Conclusions</p> <p>The clear bias of deletions over insertions in CB4856 suggests that either the CB4856 genome is becoming smaller or the N2 genome is getting larger. We hypothesize the hotspots found represent alleles that are shared between CB4856 and CB4858 but not N2. Because the k<sub>a</sub>/k<sub>s </sub>ratio in the X chromosome is higher than the autosomes on average in CB4858, purifying selection is reduced on the X chromosome.</p

    Large scale variation in the rate of germ-line de novo mutation, base composition, divergence and diversity in humans

    Get PDF
    It has long been suspected that the rate of mutation varies across the human genome at a large scale based on the divergence between humans and other species. However, it is now possible to directly investigate this question using the large number of de novo mutations (DNMs) that have been discovered in humans through the sequencing of trios. We investi- gate a number of questions pertaining to the distribution of mutations using more than 130,000 DNMs from three large datasets. We demonstrate that the amount and pattern of variation differs between datasets at the 1MB and 100KB scales probably as a consequence of differences in sequencing technology and processing. In particular, datasets show differ- ent patterns of correlation to genomic variables such as replication time. Never-the-less there are many commonalities between datasets, which likely represent true patterns. We show that there is variation in the mutation rate at the 100KB, 1MB and 10MB scale that can- not be explained by variation at smaller scales, however the level of this variation is modest at large scales–at the 1MB scale we infer that ~90% of regions have a mutation rate within 50% of the mean. Different types of mutation show similar levels of variation and appear to vary in concert which suggests the pattern of mutation is relatively constant across the genome. We demonstrate that variation in the mutation rate does not generate large-scale variation in GC-content, and hence that mutation bias does not maintain the isochore struc- ture of the human genome. We find that genomic features explain less than 40% of the explainable variance in the rate of DNM. As expected the rate of divergence between spe- cies is correlated to the rate of DNM. However, the correlations are weaker than expected if all the variation in divergence was due to variation in the mutation rate. We provide evidence that this is due the effect of biased gene conversion on the probability that a mutation will become fixed. In contrast to divergence, we find that most of the variation in diversity can be explained by variation in the mutation rate. Finally, we show that the correlation between divergence and DNM density declines as increasingly divergent species are considered

    Rapid spread of complex change: a case study in inpatient palliative care

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on positive findings from a randomized controlled trial, Kaiser Permanente's national executive leadership group set an expectation that all Kaiser Permanente and partner hospitals would implement a consultative model of interdisciplinary, inpatient-based palliative care (IPC). Within one year, the number of IPC consultations program-wide increased almost tenfold from baseline, and the number of teams nearly doubled. We report here results from a qualitative evaluation of the IPC initiative after a year of implementation; our purpose was to understand factors supporting or impeding the rapid and consistent spread of a complex program.</p> <p>Methods</p> <p>Quality improvement study using a case study design and qualitative analysis of in-depth semi-structured interviews with 36 national, regional, and local leaders.</p> <p>Results</p> <p>Compelling evidence of impacts on patient satisfaction and quality of care generated 'pull' among adopters, expressed as a remarkably high degree of conviction about the value of the model. Broad leadership agreement gave rise to sponsorship and support that permeated the organization. A robust social network promoted knowledge exchange and built on an existing network with a strong interest in palliative care. Resource constraints, pre-existing programs of a different model, and ambiguous accountability for implementation impeded spread.</p> <p>Conclusions</p> <p>A complex, hospital-based, interdisciplinary intervention in a large health care organization spread rapidly due to a synergy between organizational 'push' strategies and grassroots-level pull. The combination of push and pull may be especially important when the organizational context or the practice to be spread is complex.</p
    corecore