50 research outputs found

    A Pair of Dopamine Neurons Target the D1-Like Dopamine Receptor DopR in the Central Complex to Promote Ethanol-Stimulated Locomotion in Drosophila

    Get PDF
    Dopamine is a mediator of the stimulant properties of drugs of abuse, including ethanol, in mammals and in the fruit fly Drosophila. The neural substrates for the stimulant actions of ethanol in flies are not known. We show that a subset of dopamine neurons and their targets, through the action of the D1-like dopamine receptor DopR, promote locomotor activation in response to acute ethanol exposure. A bilateral pair of dopaminergic neurons in the fly brain mediates the enhanced locomotor activity induced by ethanol exposure, and promotes locomotion when directly activated. These neurons project to the central complex ellipsoid body, a structure implicated in regulating motor behaviors. Ellipsoid body neurons are required for ethanol-induced locomotor activity and they express DopR. Elimination of DopR blunts the locomotor activating effects of ethanol, and this behavior can be restored by selective expression of DopR in the ellipsoid body. These data tie the activity of defined dopamine neurons to D1-like DopR-expressing neurons to form a neural circuit that governs acute responding to ethanol

    Recurring Ethanol Exposure Induces Disinhibited Courtship in Drosophila

    Get PDF
    Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity

    Effects of SKF-83566 and haloperidol on performance on progressive ratio schedules maintained by sucrose and corn oil reinforcement: quantitative analysis using a new model derived from the Mathematical Principles of Reinforcement (MPR)

    Get PDF
    Rationale Mathematical models can assist the interpretation of the effects of interventions on schedule-controlled behaviour and help to differentiate between processes that may be confounded in traditional performance measures such as response rate and the breakpoint in progressive ratio (PR) schedules. Objective The effects of a D1-like dopamine receptor antagonist, 8-bromo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepin-7-ol hydrobromide (SKF-83566), and a D2-like receptor antagonist, haloperidol, on rats’ performance on PR schedules maintained by sucrose and corn oil reinforcers were assessed using a new model derived from Killeen’s (Behav Brain Sci 17:105–172, 1994) Mathematical Principles of Reinforcement. Method Separate groups of rats were trained under a PR schedule using sucrose or corn oil reinforcers. SKF-83566 (0.015 and 0.03 mg kg−1) and haloperidol (0.05 and 0.1 mg kg−1) were administered intraperitoneally (five administrations of each treatment). Running and overall response rates in successive ratios were analysed using the new model, and estimates of the model’s parameters were compared between treatments. Results Haloperidol reduced a (the parameter expressing incentive value) in the case of both reinforcers, but did not affect the parameters related to response time and post-reinforcement pausing. SKF-83566 reduced a and k (the parameter expressing sensitivity of post-reinforcement pausing to the prior inter-reinforcement interval) in the case of sucrose, but did not affect any of the parameters in the case of corn oil. Conclusions The results are consistent with the hypothesis that blockade of both D1-like and D2-like receptors reduces the incentive value of sucrose, whereas the incentive value of corn oil is more sensitive to blockade of D2-like than D1-like receptors

    Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior

    No full text
    Midbrain dopamine (DA) neurons fire in 2 characteristic modes, tonic and phasic, which are thought to modulate distinct aspects of behavior. However, the inability to selectively disrupt these patterns of activity has hampered the precise definition of the function of these modes of signaling. Here, we addressed the role of phasic DA in learning and other DA-dependent behaviors by attenuating DA neuron burst firing and subsequent DA release, without altering tonic neural activity. Disruption of phasic DA was achieved by selective genetic inactivation of NMDA-type, ionotropic glutamate receptors in DA neurons. Disruption of phasic DA neuron activity impaired the acquisition of numerous conditioned behavioral responses, and dramatically attenuated learning about cues that predicted rewarding and aversive events while leaving many other DA-dependent behaviors unaffected

    Differential Effects of Dopamine Receptor D1-Type and D2-Type Antagonists and Phase of the Estrous Cycle on Social Learning of Food Preferences, Feeding, and Social Interactions in Mice

    No full text
    The neurobiological bases of social learning, by which an animal can ‘exploit the expertise of others' and avoid the disadvantages of individual learning, are only partially understood. We examined the involvement of the dopaminergic system in social learning by administering a dopamine D1-type receptor antagonist, SCH23390 (0.01, 0.05, and 0.1 mg/kg), or a D2-type receptor antagonist, raclopride (0.1, 0.3, and 0.6 mg/kg), to adult female mice prior to socially learning a food preference. We found that while SCH23390 dose-dependently inhibited social learning without affecting feeding behavior or the ability of mice to discriminate between differently flavored diets, raclopride had the opposite effects, inhibiting feeding but leaving social learning unaffected. We showed that food odor, alone or in a social context, was insufficient to induce a food preference, proving the specifically social nature of this paradigm. The estrous cycle also affected social learning, with mice in proestrus expressing the socially acquired food preference longer than estrous and diestrous mice. This suggests gonadal hormone involvement, which is consistent with known estrogenic regulation of female social behavior and estrogen receptor involvement in social learning. Furthermore, a detailed ethological analysis of the social interactions during which social learning occurs showed raclopride- and estrous phase-induced changes in agonistic behavior, which were not directly related to effects on social learning. Overall, these results suggest a differential involvement of the D1-type and D2-type receptors in the regulation of social learning, feeding, and agonistic behaviors that are likely mediated by different underlying states
    corecore