1,898 research outputs found
Multi-Person Pose Estimation with Local Joint-to-Person Associations
Despite of the recent success of neural networks for human pose estimation,
current approaches are limited to pose estimation of a single person and cannot
handle humans in groups or crowds. In this work, we propose a method that
estimates the poses of multiple persons in an image in which a person can be
occluded by another person or might be truncated. To this end, we consider
multi-person pose estimation as a joint-to-person association problem. We
construct a fully connected graph from a set of detected joint candidates in an
image and resolve the joint-to-person association and outlier detection using
integer linear programming. Since solving joint-to-person association jointly
for all persons in an image is an NP-hard problem and even approximations are
expensive, we solve the problem locally for each person. On the challenging
MPII Human Pose Dataset for multiple persons, our approach achieves the
accuracy of a state-of-the-art method, but it is 6,000 to 19,000 times faster.Comment: Accepted to European Conference on Computer Vision (ECCV) Workshops,
Crowd Understanding, 201
2D Articulated Human Pose Estimation and Retrieval in (Almost) Unconstrained Still Images
We present a technique for estimating the spatial layout of humans in still images—the position of the head, torso and arms. The theme we explore is that once a person is localized using an upper body detector, the search for their body parts can be considerably simplified using weak constraints on position and appearance arising from that detection. Our approach is capable of estimating upper body pose in highly challenging uncontrolled images, without prior knowledge of background, clothing, lighting, or the location and scale of the person in the image. People are only required to be upright and seen from the front or the back (not side). We evaluate the stages of our approach experimentally using ground truth layout annotation on a variety of challenging material, such as images from the PASCAL VOC 2008 challenge and video frames from TV shows and feature films. We also propose and evaluate techniques for searching a video dataset for people in a specific pose. To this end, we develop three new pose descriptors and compare their classification and retrieval performance to two baselines built on state-of-the-art object detection model
LUX -- A Laser-Plasma Driven Undulator Beamline
The LUX beamline is a novel type of laser-plasma accelerator. Building on the
joint expertise of the University of Hamburg and DESY the beamline was
carefully designed to combine state-of-the-art expertise in laser-plasma
acceleration with the latest advances in accelerator technology and beam
diagnostics. LUX introduces a paradigm change moving from single-shot
demonstration experiments towards available, stable and controllable
accelerator operation. Here, we discuss the general design concepts of LUX and
present first critical milestones that have recently been achieved, including
the generation of electron beams at the repetition rate of up to 5 Hz with
energies above 600 MeV and the generation of spontaneous undulator radiation at
a wavelength well below 9 nm.Comment: submitte
Test of the Conserved Vector Current Hypothesis by beta-ray Angular Distribution Measurement in the Mass-8 System
The beta-ray angular correlations for the spin alignments of 8Li and 8B have
been observed in order to test the conserved vector current (CVC) hypothesis.
The alignment correlation terms were combined with the known beta-alpha-angular
correlation terms to determine all the matrix elements contributing to the
correlation terms. The weak magnetism term, 7.5\pm0.2, deduced from the
beta-ray correlation terms was consistent with the CVC prediction 7.3\pm0.2,
deduced from the analog-gamma-decay measurement based on the CVC hypothesis.
However, there was no consistent CVC prediction for the second-forbidden term
associated with the weak vector current. The experimental value for the
second-forbidden term was 1.0 \pm 0.3, while the CVC prediction was 0.1 \pm 0.4
or 2.1 \pm 0.5.Comment: 31 pages, 12 figures, Accepted for publication in Phys. Rev.
Golden gravitational lensing systems from the Sloan Lens ACS Survey. I. SDSS J1538+5817: one lens for two sources
We present a lensing and photometric study of the exceptional system SDSS
J1538+5817, identified by the SLACS survey. The lens is a luminous elliptical
at redshift z=0.143. Using HST public images in two different filters, the
presence of two background sources lensed into an Einstein ring and a double
system is ascertained. Our new spectroscopic observations, performed at the
NOT, reveal that the two sources are located at the same redshift z=0.531. We
investigate the total mass distribution of the lens between 1 and 4 kpc from
the galaxy center by means of parametric and non-parametric lensing codes that
describe the multiple images as point-like objects. Several disparate lensing
models agree on: (1) reproducing accurately the observed image positions; (2)
predicting a nearly axisymmetric total mass distribution, centered and oriented
as the light distribution; (3) measuring a value of 8.11 x 10^{10} M_{Sun} for
the total mass projected within the Einstein radius of 2.5 kpc; (4) estimating
a total mass density profile slightly steeper than an isothermal one. A fit of
the SDSS multicolor photometry with CSP models provides a value of 20 x 10^{10}
M_{Sun} for the total stellar mass of the galaxy and of 0.9 for the fraction of
projected luminous over total mass enclosed inside the Einstein radius. By
combining lensing and photometric mass measurements, we differentiate the lens
mass content in terms of luminous and dark matter components. This
two-component modeling, which is viable only in extraordinary systems like SDSS
J1538+5817, leads to a description of the global properties of the galaxy dark
matter halo. Extending these results to a larger number of lenses would improve
considerably our understanding of galaxy formation and evolution processes in
the LCDM scenario.Comment: 21 pages, 16 figures, accepted by The Astrophysical Journa
Design considerations for table-top, laser-based VUV and X-ray free electron lasers
A recent breakthrough in laser-plasma accelerators, based upon ultrashort
high-intensity lasers, demonstrated the generation of quasi-monoenergetic
GeV-electrons. With future Petawatt lasers ultra-high beam currents of ~100 kA
in ~10 fs can be expected, allowing for drastic reduction in the undulator
length of free-electron-lasers (FELs). We present a discussion of the key
aspects of a table-top FEL design, including energy loss and chirps induced by
space-charge and wakefields. These effects become important for an optimized
table-top FEL operation. A first proof-of-principle VUV case is considered as
well as a table-top X-ray-FEL which may open a brilliant light source also for
new ways in clinical diagnostics.Comment: 6 pages, 4 figures; accepted for publication in Appl. Phys.
Improved limits on nuebar emission from mu+ decay
We investigated mu+ decays at rest produced at the ISIS beam stop target.
Lepton flavor (LF) conservation has been tested by searching for \nueb via the
detection reaction p(\nueb,e+)n. No \nueb signal from LF violating mu+ decays
was identified. We extract upper limits of the branching ratio for the LF
violating decay mu+ -> e+ \nueb \nu compared to the Standard Model (SM) mu+ ->
e+ nue numub decay: BR < 0.9(1.7)x10^{-3} (90%CL) depending on the spectral
distribution of \nueb characterized by the Michel parameter rho=0.75 (0.0).
These results improve earlier limits by one order of magnitude and restrict
extensions of the SM in which \nueb emission from mu+ decay is allowed with
considerable strength. The decay \mupdeb as source for the \nueb signal
observed in the LSND experiment can be excluded.Comment: 10 pages, including 1 figure, 1 tabl
Use of Modified Clostridium perfringens Enterotoxin Fragments for Claudin Targeting in Liver and Skin Cells
Claudins regulate paracellular permeability in different tissues. The claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) is a known modulator of a claudin subset. However, it does not efficiently bind to claudin-1 (Cldn1). Cldn1 is a pharmacological target since it is (i) an essential co-receptor for hepatitis C virus (HCV) infections and (ii) a key element of the epidermal barrier limiting drug delivery. In this study, we investigated the potential of a Cldn1-binding cCPE mutant (i) to inhibit HCV entry into hepatocytes and (ii) to open the epidermal barrier. Inhibition of HCV infection by blocking of Cldn1 with cCPE variants was analyzed in the Huh7.5 hepatoma cell line. A model of reconstructed human epidermis was used to investigate modulation of the epidermal barrier by cCPE variants. In contrast to cCPEwt, the Cldn1-binding cCPE-S305P/S307R/S313H inhibited infection of Huh7.5 cells with HCV in a dose-dependent manner. In addition, TJ modulation by cCPE variant-mediated targeting of Cldn1 and Cldn4 opened the epidermal barrier in reconstructed human epidermis. cCPE variants are potent claudin modulators. They can be applied for mechanistic in vitro studies and might also be used as biologics for therapeutic claudin targeting including HCV treatment (host-targeting antivirals) and improvement of drug delivery
CLASH: z ~ 6 young galaxy candidate quintuply lensed by the frontier field cluster RXC J2248.7-4431
We present a quintuply lensed z ~ 6 candidate discovered in the field of the
galaxy cluster RXC J2248.7-4431 (z ~ 0.348) targeted within the Cluster Lensing
and Supernova survey with Hubble (CLASH) and selected in the deep HST Frontier
Fields survey. Thanks to the CLASH 16-band HST imaging, we identify the
quintuply lensed z ~ 6 candidate as an optical dropout in the inner region of
the cluster, the brightest image having magAB=24.81+-0.02 in the f105w filter.
We perform a detailed photometric analysis to verify its high-z and lensed
nature. We get as photometric redshift z_phot ~ 5.9, and given the extended
nature and NIR colours of the lensed images, we rule out low-z early type and
galactic star contaminants. We perform a strong lensing analysis of the
cluster, using 13 families of multiple lensed images identified in the HST
images. Our final best model predicts the high-z quintuply lensed system with a
position accuracy of 0.8''. The magnifications of the five images are between
2.2 and 8.3, which leads to a delensed UV luminosity of L_1600 ~ 0.5L*_1600 at
z=6. We also estimate the UV slope from the observed NIR colours, finding a
steep beta=-2.89+-0.38. We use singular and composite stellar population SEDs
to fit the photometry of the hiz candidate, and we conclude that it is a young
(age <300 Myr) galaxy with mass of M ~ 10^8Msol, subsolar metallicity
(Z<0.2Zsol) and low dust content (AV ~ 0.2-0.4).Comment: 21 pages, 13 figures, 6 tables, submitted to MNRAS on 11 Aug 2013,
accepted on 23 Nov 201
A model of household housing adjustment: confronting analytical issues
A causal model of household housing adjustment is tested. The variables of interest are propensity to move, housing satisfaction, neighborhood satisfaction, housing deficits, and household characteristics. Ordinary least squares regression is used to test the model. The analytical techniques include scaling and recoding to improve the distributions of the variables. It was found that levels of propensity to move are highest for households with the lowest levels of housing satisfaction. Neighborhood satisfaction is not a determinant of propensity to move. Households that are most satisfied with their housing have high neighborhood satisfaction and few housing deficits. Curvilinear relationships are found between age of the head of the household and propensity to move. Farm families have low levels of propensity to move despite low levels of satisfaction. Household size and community size had constraining influences on propensity to move
- …
