503 research outputs found
Clinical relevance of biomarkers of oxidative stress
SIGNIFICANCE
Oxidative stress is considered to be an important component of various diseases. A vast number of methods have been developed and used in virtually all diseases to measure the extent and nature of oxidative stress, ranging from oxidation of DNA to proteins, lipids, and free amino acids. Recent Advances: An increased understanding of the biology behind diseases and redox biology has led to more specific and sensitive tools to measure oxidative stress markers, which are very diverse and sometimes very low in abundance.
CRITICAL ISSUES
The literature is very heterogeneous. It is often difficult to draw general conclusions on the significance of oxidative stress biomarkers, as only in a limited proportion of diseases have a range of different biomarkers been used, and different biomarkers have been used to study different diseases. In addition, biomarkers are often measured using nonspecific methods, while specific methodologies are often too sophisticated or laborious for routine clinical use.
FUTURE DIRECTIONS
Several markers of oxidative stress still represent a viable biomarker opportunity for clinical use. However, positive findings with currently used biomarkers still need to be validated in larger sample sizes and compared with current clinical standards to establish them as clinical diagnostics. It is important to realize that oxidative stress is a nuanced phenomenon that is difficult to characterize, and one biomarker is not necessarily better than others. The vast diversity in oxidative stress between diseases and conditions has to be taken into account when selecting the most appropriate biomarker. Antioxid. Redox Signal. 00, 000-000
Synergistic drug-cytokine induction of hepatocellular death as an in vitro approach for the study of inflammation-associated idiosyncratic drug hepatotoxicity
Idiosyncratic drug hepatotoxicity represents a major problem in drug development due to inadequacy of current preclinical screening assays, but recently established rodent models utilizing bacterial LPS co-administration to induce an inflammatory background have successfully reproduced idiosyncratic hepatotoxicity signatures for certain drugs. However, the low-throughput nature of these models renders them problematic for employment as preclinical screening assays. Here, we present an analogous, but high-throughput, in vitro approach in which drugs are administered to a variety of cell types (primary human and rat hepatocytes and the human HepG2 cell line) across a landscape of inflammatory contexts containing LPS and cytokines TNF, IFNγ, IL-1α, and IL-6. Using this assay, we observed drug–cytokine hepatotoxicity synergies for multiple idiosyncratic hepatotoxicants (ranitidine, trovafloxacin, nefazodone, nimesulide, clarithromycin, and telithromycin) but not for their corresponding non-toxic control compounds (famotidine, levofloxacin, buspirone, and aspirin). A larger compendium of drug–cytokine mix hepatotoxicity data demonstrated that hepatotoxicity synergies were largely potentiated by TNF, IL-1α, and LPS within the context of multi-cytokine mixes. Then, we screened 90 drugs for cytokine synergy in human hepatocytes and found that a significantly larger fraction of the idiosyncratic hepatotoxicants (19%) synergized with a single cytokine mix than did the non-hepatotoxic drugs (3%). Finally, we used an information theoretic approach to ascertain especially informative subsets of cytokine treatments for most highly effective construction of regression models for drug- and cytokine mix-induced hepatotoxicities across these cell systems. Our results suggest that this drug–cytokine co-treatment approach could provide a useful preclinical tool for investigating inflammation-associated idiosyncratic drug hepatotoxicity.Pfizer Inc.Institute for Collaborative BiotechnologiesMIT Center for Cell Decision ProcessesNational Institute of Mental Health (U.S.) (grant P50-GM68762)National Institute of Mental Health (U.S.) (grant T32-GM008334)Massachusetts Institute of Technology. Biotechnology Process Engineering CenterMassachusetts Institute of Technology. Center for Environmental Health SciencesNational Institute of Mental Health (U.S.) (grant U19ES011399)Whitaker Foundatio
Institutional management of greenhouse gas emissions: How much does 'green' reputation matter?
Climate Change, green reputation, conjoint analysis, Environmental Economics and Policy, Resource /Energy Economics and Policy, Q29, Q40, Q51,
A metabolomics cell-based approach for anticipating and investigating drug-induced liver injury
In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity is an important issue for both saving resources and preventing public health risks. Current in vitro cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic information. This study aimed to develop a metabolomic mass spectrometry-based approach for the detection and classification of drug-induced hepatotoxicity. To this end, the metabolite profiles of human derived hepatic cells (i.e., HepG2) exposed to different well-known hepatotoxic compounds acting through different mechanisms (i.e., oxidative stress, steatosis, phospholipidosis, and controls) were compared by multivariate data analysis, thus allowing us to decipher both common and mechanism-specific altered biochemical pathways. Briefly, oxidative stress damage markers were found in the three mechanisms, mainly showing altered levels of metabolites associated with glutathione and γ-glutamyl cycle. Phospholipidosis was characterized by a decreased lysophospholipids to phospholipids ratio, suggestive of phospholipid degradation inhibition. Whereas, steatosis led to impaired fatty acids β-oxidation and a subsequent increase in triacylglycerides synthesis. The characteristic metabolomic profiles were used to develop a predictive model aimed not only to discriminate between non-toxic and hepatotoxic drugs, but also to propose potential drug toxicity mechanism(s)
Evaluation of effectiveness of instruction and study habits in two consecutive clinical semesters of the medical curriculum munich (MeCuM) reveals the need for more time for self study and higher frequency of assessment
<p>Abstract</p> <p>Background</p> <p>Seven years after implementing a new curriculum an evaluation was performed to explore possibilities for improvements.</p> <p>Purposes: To analyze students' study habits in relation to exam frequency and to evaluate effectiveness of instruction.</p> <p>Methods</p> <p>Time spent on self study (TSS) and the quantity of instruction (QI) was assessed during the internal medicine and the surgical semester. Students and faculty members were asked about study habits and their evaluation of the current curriculum.</p> <p>Results</p> <p>The TSS/QI ratio as a measure of effectiveness of instruction ranges mainly below 1.0 and rises only prior to exams. Students and teachers prefer to have multiple smaller exams over the course of the semester. Furthermore, students wish to have more time for self-guided study.</p> <p>Conclusions</p> <p>The TSS/QI ratio is predominantly below the aspired value of 1.0. Furthermore, the TSS/QI ratio is positively related to test frequency. We therefore propose a reduction of compulsory lessons and an increase in test frequency.</p
Breast cancer and childhood anthropometry: emerging hypotheses?
In this issue of Breast Cancer Research, Baer and colleagues report a strong protective effect of childhood and adolescent body fatness on premenopausal breast cancer risk based on a large prospective study. Methodological issues are discussed, as are tentative biological interpretations regarding the findings
Cancer patients' preferences for written prognostic information provided outside the clinical context
Identification of Protein Targets of Reactive Metabolites of Tienilic Acid in Human Hepatocytes
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
Chemical Research in Toxicology, copyright © American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/tx300103jTienilic acid (TA) is a uricosuric diuretic that was withdrawn from the market only months after its introduction because of reports of serious incidents of drug-induced liver injury including some fatalities. Its hepatotoxicity is considered to be primarily immunoallergic in nature. Like other thiophene compounds, TA undergoes biotransformation to a S-oxide metabolite which then reacts covalently with cellular proteins. To identify protein targets of TA metabolites, we incubated [14C]-TA with human hepatocytes, separated cellular proteins by 2D gel electrophoresis, and analyzed proteins in 36 radioactive spots by tryptic digestion followed by LC-MS/MS. Thirty one spots contained at least one identifiable protein. Sixteen spots contained only one of 14 non-redundant proteins which were thus considered to be targets of TA metabolites. Six of the 14 were also found in other radioactive spots that contained from 1 to 3 additional proteins. Eight of the 14 had not been reported to be targets for any reactive metabolite other than TA. The other 15 spots each contained from 2–4 identifiable proteins, many of which are known targets of other chemically reactive metabolites, but since adducted peptides were not observed, the identity of the adducted protein(s) in these spots is ambiguous. Interestingly, all the radioactive spots corresponded to proteins of low abundance, while many highly abundant proteins in the mixture showed no radioactivity. Furthermore, of approximately 16 previously reported protein targets of TA in rat liver (Methogo, R., Dansette, P. and Klarskov, K. (2007) Int. J. Mass Spectrom., 268, 284–295), only one (fumarylacetoacetase) is among the 14 targets identified in this work. One reason for this difference may be statistical, given that each study identified a small number of targets from among thousands present in hepatocytes. Another may be the species difference (i.e. rat vs. human), and still another may be the method of detection of adducted proteins (i.e. Western blot vs. C-14). Knowledge of human target proteins is very limited. Of more than 350 known protein targets of reactive metabolites, only 42 are known from human and only 21 of these are known to be targets for more than one chemical. Nevertheless, the demonstration that human target proteins can be identified using isolated hepatocytes in vitro should enable the question of species differences to be addressed more fully in the future
Rationale and design of the EMPERIAL-Preserved and EMPERIAL-Reduced trials of empagliflozin in patients with chronic heart failure
Aims: Heart failure (HF) is associated with considerable symptom burden and impairment in physical functioning and quality of life. The sodium–glucose co-transporter 2 inhibitor empagliflozin reduced the risk of HF hospitalisation and cardiovascular death in patients with type 2 diabetes and established cardiovascular disease in the EMPA-REG OUTCOME trial, and could potentially improve congestion symptoms and exercise capacity in patients with HF. We describe the designs of the EMPERIAL-Preserved and EMPERIAL-Reduced trials of empagliflozin in patients with chronic stable HF, with or without type 2 diabetes. Methods: EMPERIAL-Preserved and EMPERIAL-Reduced are randomised, placebo-controlled trials designed to investigate the effects of empagliflozin on exercise capacity and patient-reported outcomes in patients with chronic stable HF with preserved ejection fraction [HFpEF; left ventricular ejection fraction (LVEF) > 40%] and HF with reduced ejection fraction (HFrEF; LVEF ≤ 40%), respectively. In each trial, approximately 300 patients will be randomised 1:1 to receive empagliflozin 10 mg or placebo once daily for 12 weeks. In both trials, the primary endpoint is the change from baseline in 6-min walk test distance at week 12. Key secondary endpoints are the change from baseline in Kansas City Cardiomyopathy Questionnaire total symptom score and change from baseline in dyspnoea score of the Chronic Heart Failure Questionnaire at week 12. Conclusion: The EMPERIAL-Preserved and EMPERIAL-Reduced trials will determine the effects of empagliflozin on exercise capacity and patient-reported outcomes in patients with HFpEF and HFrEF, respectively, and provide insight into the potential of empagliflozin in the treatment of patients with HF. Clinical Trial Registration: ClinicalTrials.gov ID: NCT03448406 (EMPERIAL-Preserved), NCT03448419 (EMPERIAL-Reduced). (EMPERIAL Investigators) (Natl Coordinators
Clinical Pattern of Tolvaptan-Associated Liver Injury in Subjects with Autosomal Dominant Polycystic Kidney Disease: Analysis of Clinical Trials Database
IntroductionSubjects with autosomal dominant polycystic kidney disease (ADPKD) who were taking tolvaptan experienced aminotransferase elevations more frequently than those on placebo in the TEMPO 3:4 (Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and its Outcomes) clinical trial.MethodsAn independent, blinded, expert Hepatic Adjudication Committee re-examined data from TEMPO 3:4 and its open-label extension TEMPO 4:4, as well as from long-term (>14months) non-ADPKD tolvaptan trials, using the 5-point Drug-Induced Liver Injury Network classification.ResultsIn TEMPO 3:4, 1445 subjects were randomized 2:1 (tolvaptan vs. placebo) and 1441 had post-baseline assessments of hepatic injury. Sixteen patients on tolvaptan and one on placebo had significant aminotransferase elevations judged to be at least probably related to study drug. No association with dose or systemic exposure was found. Two of 957 subjects taking tolvaptan (0.2%) and zero of 484 taking placebo met the definition of a Hy’s Law case. One additional Hy’s Law case was identified in a TEMPO 4:4 subject who had received placebo in the lead study. The onset of a hepatocellular injury occurred between 3 and 18months after starting tolvaptan, with gradual resolution over the subsequent 1–4months. None of the events were associated with liver failure or chronic liver injury/dysfunction. No imbalance in hepatic events was observed between tolvaptan and placebo in lower-dose clinical trials of patients with hyponatremia, heart failure, or cirrhosis.ConclusionsAlthough hepatocellular injury following long-term tolvaptan treatment in ADPKD subjects was infrequent and reversible, the potential for serious irreversible injury exists. Regular monitoring of transaminase levels is warranted in this patient population
- …
