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A metabolomics cell-based 
approach for anticipating and 
investigating drug-induced  
liver injury
Juan Carlos García- Cañaveras1,2, José V. Castell1,2, M. Teresa Donato1,2 & Agustín Lahoz1

In preclinical stages of drug development, anticipating potential adverse drug effects such as toxicity 
is an important issue for both saving resources and preventing public health risks. Current in vitro 
cytotoxicity tests are restricted by their predictive potential and their ability to provide mechanistic 
information. This study aimed to develop a metabolomic mass spectrometry-based approach for the 
detection and classification of drug-induced hepatotoxicity. To this end, the metabolite profiles of 
human derived hepatic cells (i.e., HepG2) exposed to different well-known hepatotoxic compounds 
acting through different mechanisms (i.e., oxidative stress, steatosis, phospholipidosis, and 
controls) were compared by multivariate data analysis, thus allowing us to decipher both common 
and mechanism-specific altered biochemical pathways. Briefly, oxidative stress damage markers 
were found in the three mechanisms, mainly showing altered levels of metabolites associated with 
glutathione and γ-glutamyl cycle. Phospholipidosis was characterized by a decreased lysophospholipids 
to phospholipids ratio, suggestive of phospholipid degradation inhibition. Whereas, steatosis led 
to impaired fatty acids β-oxidation and a subsequent increase in triacylglycerides synthesis. The 
characteristic metabolomic profiles were used to develop a predictive model aimed not only to 
discriminate between non-toxic and hepatotoxic drugs, but also to propose potential drug toxicity 
mechanism(s).

Drug-induced liver injury (DILI) is a health problem that poses an important challenge for clinicians, the phar-
maceutical industry and regulatory agencies1. DILI is a complex phenomenon which encompasses a wide spec-
trum of clinical manifestations (from mild biochemical alterations to acute liver failure) and represents the most 
frequent cause of acute liver failure2,3. Hepatotoxicity is also a major safety issue in drug development and is a 
leading cause of attrition of drug candidates, restriction of use and post-market withdrawal of approved drugs1,4. 
Safety assays during drug development are performed to minimize potential risks to humans and reduce financial 
costs. Preclinical testing in laboratory animals often fails to predict human DILI because of the major interspecies 
differences in drug metabolism and toxicity targets5. In this scenario, human liver-derived cells constitute valu-
able models for in vitro hepatotoxicity screenings6. Their suitability for investigating the molecular and cellular 
processes involved in hepatotoxicity and their abilities to detect potential toxic effects before drug candidates are 
tested in animals and enter in clinical trials have been amply demonstrated6.

Traditionally, in vitro toxicity screenings have relied on the use of single-endpoint measurements aimed to 
estimate cell viability and/or the functional metabolic state of cells previously exposed to test compounds. These 
assays usually monitor events that occur late in the cell injury process6,7, and have unfortunately shown poor 
prediction of human hepatotoxicity6,8,9. Therefore, the development of reliable screening approaches able to 
detect hepatotoxicity early in the drug development remains a challenge. With the advent of the “omics” technol-
ogies, new approaches have been developed to propose predictive signatures and to study drug toxicity mecha-
nisms10–12. The simultaneous measurement of multiple parameters may contribute to the development of more 
accurate and predictive strategies13. Multiparametric approaches integrate data obtained simultaneously from 
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different cell function indicators, which may suggest the mechanism of toxic action of a given compound and help 
in prioritizing compounds in drug discovery based on their potential hepatotoxicity to humans. In this sense, 
transcriptomic-based analyses or cell imaging technology have been proposed for hepatotoxicity screenings in 
cultured cells11,14,15. Although these assays offer the possibility of detecting subtle toxicity-related changes that 
may go unnoticed with mono-parametric assays8, they fail to provide translational biomarkers and report limited 
mechanistic information from a functional point of view. Metabolomics, which is aimed to the unbiased measure-
ment of all the “downstream” products of genes and proteins (i.e., metabolites), could complete the mechanistic 
information provided by other “omics” and imaging approaches16. The capabilities of metabolomics to assess the 
cell response to external stimuli have been widely demonstrated, several studies reported their use in biomarkers 
discovery and providing new insights into drug modes of action12,17,18. Metabolomics provides the closest infor-
mation to the phenotype of the system under study (cell, tissue, and organism), which, in the case of patients, 
could be used to obtain new toxicity-related biomarkers easily amenable to the clinic19.

In the present study, we assessed the capabilities of liquid chromatography (LC) coupled to mass spectrome-
try (MS) based untargeted metabolite profiling as tool to detect and classify the potential hepatotoxicity of new 
drugs. To this end, the metabolite profiles of HepG2 cells, which were previously exposed to different well-known 
model compounds that induce hepatotoxicity through different mechanisms (i.e., oxidative stress, steatosis, 
phospholipidosis, and controls), were obtained. Then, multivariate data analysis was used for the differential 
comparison of these metabolite profiles and to decipher discriminant mechanism-specific metabolic signatures. 
Such specific metabolomic fingerprints were used to develop a predictive model aimed not only to discriminate 
between non-toxic and hepatotoxic drugs but also to propose their main toxicity mechanism(s). In addition, the 
rich metabolome data was submitted to functional enrichment analysis that allowed us to unravel those cellular 
pathways most significantly altered in each toxic mechanism.

Results
Metabolite profiling of drug-induced hepatotoxicity. HepG2 cells were exposed for 24 h to non-le-
thal concentrations of model hepatotoxins and non-toxic drugs (Table 1). Cell monolayers were then processed 
and subsequently analyzed following a previously described LC-MS-based untargeted metabolic profiling strat-
egy, which allowed for the determination of more than 300 metabolites comprising both polar and non-polar  
compounds20,21. First, LC-MS data quality was assessed by using several internal standards (IS) and quality con-
trol (QC) samples (Supplementary Table S1). Then, data sets were subjected to non-supervised multivariate data 
analysis techniques to evaluate the presence of any metabolomic pattern that could discriminate between toxic 
and non-toxic compounds. The PCA (principal component analysis) scores plots showed an almost complete 
separation between cells treated with control compounds and those treated with hepatotoxic compounds, while 
the differences among the three toxicity mechanisms were not so clear (Fig. 1a,b). To evaluate whether the ana-
lytical strategy was able to distinguish between those alterations that may be considered as common to all the 
toxic events from those more mechanism-specific, a supervised analysis of the MS-data was performed consid-
ering groups on the following bases; toxic vs non-toxic (Fig. 1c) and mechanism-based groups (Fig. 1d). Both 
approaches led to a clear separation of the classes as shown in the PLS-DA (projection to latent structures-dis-
criminant analysis) scores plots, and all the models showed good figures of merit for the PLS-DA, based on 
cross-validation (Fig. 1e). A detailed inspection of the discriminant metabolites revealed that although some of 
them were present in both analyses, a set of metabolites remained mechanism-specific (Fig. 1f). Information of 
the common and mechanism-specific altered metabolites and metabolites classes is provided in Fig. 1g.

Compound Abbreviation Therapeutic class Mechanisma IC10 (μM)b IC50 (μM)b Cmax
c (μM) Concentrationd (μM)

Citrate Cit Urinary alkalinizer C > 1000 NA 500, 1000

Ketotifen Ket Antihistaminic C 130 ±  50 400 ±  200 0.0014 50, 100

Cumene hydroperoxide Cum OS 480 ±  90 800 ±  200 NA 50, 100, 250

tert-Butyl hydroperoxide Tert OS 280 ±  40 590 ±  180 NA 50, 100, 250

Amiodarone Am Antiarrhythmic P 26 ±  4 78 ±  13 2.2 5, 10, 20

Clozapine Clo Antipsychotic P 41 ±  12 60 ±  10 1.09 10, 20

Fluoxetine Fluo Antidepressant P 12 ±  2 43 ±  5 0.93 20

Tilorone Til Antiviral P 14 ±  3 65 ±  7 - 5, 20

Tamoxifen Tam Antiestrogen P 32 ±  2 57 ±  5 0.27 15

Doxycycline Dox Antibiotic S 600 ±  200 2200 ±  500 8.77 250, 500

Tetracycline Tet Antibiotic S 640 ±  180 1350 ±  150 14.2 50, 100, 200, 400

Valproate Val Anticonvulsant S 8870 ±  1500 17800 ±  3000 481 2000, 4000, 8000

Table 1.  Mechanistic classification, cytotoxicity to HepG2 cells and selected concentrations of the 
compounds included in the metabolomic study. NA: not applicable. aMajor mechanism involved in 
hepatotoxicity induced by the compound: S, steatosis; P, phospholipidosis; OS, oxidative stress; C, non-
hepatotoxic (control)28,50. bIC10 and IC50: the compound concentration that leads to a reduction of 10% and 
50%, respectively, in viability (MTT assay) of HepG2 cells after 24 h of treatment14,20,50. cCmax: Therapeutically 
active average plasma maximum concentration values upon single-dose administration at commonly 
recommended therapeutic doses11,35,50. dConcentrations used in the metabolomic study.
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Unraveling toxicity-related pathways. To highlight the differences induced by each hepatotoxicity 
mechanism, pairwise comparisons (with respect to non-toxic compounds) were performed. A clear separa-
tion between the cells treated with non-hepatotoxic compounds (controls) and those treated with the different 
hepatotoxic model compounds (i.e., oxidative stress, phospholipidosis and steatosis) was observed by the use of 
non-supervised data analys (i.e. PCA) (Fig. 2a). Noticeable and specific metabolomic changes for each group of 
compounds was observed, so uni- and multivariate supervised data analysis techniques were employed to identify 
those metabolites that were significantly altered because of each specific toxicity mechanism (Fig. 2b,c). The anal-
ysis revealed the presence of both common and mechanism-specific altered metabolites (Fig. 2d). However, the 
magnitude or even the direction of the change was significantly different for many of them (Supplementary Tables 
S2 and S3). The specific set of discriminant metabolites found in each pairwise comparison were submitted to 

Figure 1. Multivariate data analysis overview of the metabolomic changes induced by the model toxic 
compounds. PCA scores plots performed using two (a) or three (b) principal components corresponding 
to data obtained from HepG2 cells treated with hepatotoxins acting through different mechanisms. Each 
point summarizes all the information provided by the four different analytical conditions (272 identified 
metabolites). (c) PLS-DA scores plot corresponding to a model built using two latent variables and aimed at 
the discrimination between control compounds and hepatotoxicants. The lines denote 95% confidence interval 
Hotelling’s ellipses. (d) PLS-DA scores plot corresponding to a model built using three latent variables and 
aimed at the discrimination among the different mechanisms of hepatotoxicity. The lines denote 95% confidence 
interval Hotelling’s ellipses. (e) Figures of merit of the PLS-DA models. Misclassification error and AUROC are 
expressed as mean ±  standard deviation. (f) Venn diagram showing the overlap among the metabolites altered 
by the control vs. toxic analysis with respect to the analysis focused on a mechanism-specific discrimination.  
(g) Differential metabolites/metabolic pathways/classes of metabolites alterations detected using either the 
control vs. toxic or the mechanism-specific-based discrimination. OS: oxidative stress; P: phospholipidosis; S: 
steatosis.
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metabolic pathway enrichment analysis to map the pathways and cell functions most significantly altered. Major 
mechanism-specific results are summarized below.

Oxidative stress inducers. A total of 68 metabolites were significantly altered after exposure of 
HepG2 cells to oxidative stress inducers (Supplementary Table S2). As expected, alterations in well-known 
low-molecular-weight oxidative stress markers (i.e., reduced glutathione (GSH), oxidized glutathione (GSSG), 
cysteine glutathione disulfide (CSSG), γ -glutamyl dipeptides, glutamate and glutamine) were found (Fig. 3). 
Pathway enrichment analysis showed that glutamate, GSH, nitrogen, amino acid and nucleobases metabolism 
pathways were altered after the toxic insult. Additionally, alterations in lipid homeostasis covering fatty acid (FA), 
triacylglyceride (TG) and phospholipid (PL) metabolism were also detected (Figs 4 and 5).

Phospholipidogenic drugs. Phospholipidogenic drugs induced changes in 63 identified metabolites 
(Supplementary Table S2). The pathway analysis showed PL, unsaturated FA metabolism, urea cycle, glutamate, 
and GSH metabolism as the most significantly altered biochemical pathways. Although, no notable changes 
were observed for both PL and LysoPL levels, a significant decrease in the LysoPL/PL ratio was detected (Fig. 4, 
Supplementary Table S3). With respect to polar metabolites, the most remarkable changes were associated with 
the appearance of oxidative stress markers (i.e. increased levels of CSSG and decreased levels of GSH and the 
GSH/GSSG ratio) (Fig. 3).

Steatogenic drugs. Drug-induced steatosis in HepG2 cells resulted in the significant alteration of 92 metab-
olites (Supplementary Table S2). A functional enrichment analysis pointed FA, TG, amino acid, urea cycle, nitro-
gen, PL, glutamate, cysteine and GSH metabolism as the most affected pathways. The main lipidome alterations 
were the increase in the levels of TG, diacylglycerides (DG), PL and LysoPL and a decrease in FA levels (Figs 4 

Figure 2. Multivariate data analysis of the metabolomic changes induced by each mechanism of 
hepatotoxicity. PCA (a) and PLS-DA (b) scores plots corresponding to pairwise comparisons (i.e. control vs. 
each mechanism of hepatotoxicity) of the data obtained from HepG2 cells treated with hepatotoxins acting 
through different mechanisms. Each point summarizes all the information provided by the four different 
analytical conditions (272 identified metabolites). The lines denote 95% confidence interval Hotelling’s 
ellipses. PCA models were developed using two principal components. PLS-DA models were built using one 
latent variable. (c) Figures of merit of the PLS-DA models. Misclassification error and AUROC are expressed 
as mean ±  standard deviation. (d) Venn diagram showing the overlap among the metabolites altered by the 
model compounds representative of different toxicity mechanisms. Green: control; blue: oxidative stress; 
red: phospholipidosis; purple: steatosis. Abbreviations corresponding to drug names and concentrations are 
depicted in Table 1, C corresponds to control culture and DMSO to control culture with DMSO at 0.5% (v/v).
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and 5). With respect to polar metabolites, although several compounds were altered as a result of drug-induced 
steatosis, it is worth noting the significant changes observed in the oxidative stress markers (Fig. 3).

Development and validation of a hepatotoxicity predictive model. A PLS-DA model was built to 
evaluate whether the discovered metabolomic fingerprints were able not only to detect hepatotoxicity but also to 

Figure 3. Metabolic alterations related to GSH metabolism and the γ-glutamyl cycle. (a) Boxplots showing 
the altered metabolites. Boxes denote interquartile ranges, lines denote medians and whiskers denote the 10th 
and 90th percentiles. Metabolite relative abundance, expressed as ratio or log-transformed, is calculated by 
referring metabolite peak intensity to a constant concentration of internal standard per mg of tissue. Green: 
control (C); blue: oxidative stress (OS); red: phospholipidosis (P); purple: steatosis (S). * , q value <  0.05;  
* * , q value <  0.01; * * * , q value <  0.001 calculated using the Mann Whitney test corrected for multiple testing 
by using FDR. (b) The γ -glutamyl cycle, which accounts for GSH synthesis and recycling. Enzymes are denoted 
in italics. Square boxes denote transmembrane transporters. Aa: amino acid; Cys: cysteine; Cys-Gly: cysteinyl-
glycine; DP: dipeptidase; GCL: glutamate cysteine ligase; γ -Glu-Aa: γ -glutamyl amino acid; GGT: γ -glutamyl 
transpeptidase; Glu: glutamate; Gly: glycine; GS: glutathione synthetase.
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classify the toxic effect according to its main mechanism of action (i.e. oxidative stress, phospholipidosis and ste-
atosis). For model development and validation samples were split into two subsets, one for model development, 
using 80% of the samples and a different one for external model validation, which was set by a random selection 
of 20% of the samples equally distributed among the groups (Supplementary Table S4). To avoid redundant infor-
mation and instrumental noise, MS data was submitted to a variable selection procedure22. Data reduction has 
been shown to be a straightforward strategy to achieve model simplification, and improve model handling and 
performance. Basically, the variable selection process consisted in ranking the variables (i.e., metabolites) attend-
ing to their VIP (variable importance in the projection) values obtained by the PLS-DA analysis. The final model 
was constructed using three latent variables and the top 26 ranked markers, which were selected according to 
the cross-validation results (Supplementary Figure S1, Supplementary Table S5). A good separation between the 
different groups, with almost no overlap between the 95% confidence Hotelling’s ellipses calculated for each class, 
was observed in the scores plot (Fig. 6a) and remarkable figures of merit were obtained by using cross validation 
(Fig. 6b). To further validate the PLS-DA model, two permutation tests were run, one using the misclassification 
error as the evaluating parameter, and the other using AUROC (area under the receiver operating characteristic 
curve) (Supplementary Figure S2). In both cases, the 95% confidence intervals of the values obtained with real 
assignments were beyond the values obtained using randomly permuted assignments. As the permutation tests 
were performed with 1000 permuted models, it was possible to assign an empirical p value of < 0.00123. Finally, 
a real model validation was performed by the assessment of an external set of samples, comprising samples that 
were not used for model building. The results reveal that all samples were correctly projected by the PLS-DA 
model with different degrees of confidence (Fig. 6a), thus strengthening its consistency.

Discussion
The complexity of the mechanisms involved in hepatotoxicity and its unpredictable occurrence complicates the 
identification of drugs that have the potential to cause toxicity. Here, we intended to develop a cell-based metab-
olomic approach aimed not only to detect drug potential toxicity but also to classify its main mechanism(s) of 
action. HepG2 cells were chosen for the present study as they have been extensively used as cell model in hepato-
toxicity testing9,11,24,25. Despite its functional and physiological differences with respect to hepatocytes, especially 
related to drug metabolism and transport, the HepG2 cell line meets several essential requirements that strength-
ens its utility for hepatotoxicity screening, including its human hepatic origin, widespread use, lifespan, easy 
handling and reproducibility6,26. One major drawback of these cells is their low metabolic capabilities. However, 
such limitation can be overcome by using different strategies such as transfection with adenovirus or addition 
of S9 fractions containing drug-metabolizing enzymes27. An important issue in the development of predictive 

Figure 4. Metabolic alterations related to phospholipid metabolism. (a) Boxplots showing the altered 
metabolites. Boxes denote interquartile ranges, lines denote medians and whiskers denote the 10th and 90th 
percentiles. Metabolite relative abundance, expressed as ratio or log-transformed, is calculated by referring 
metabolite peak intensity to a constant concentration of internal standard per mg of tissue. Green: control (C); 
blue: oxidative stress (OS); red: phospholipidosis (P); purple: steatosis (S). * , q value <  0.05; * * , q value <  0.01; * 
* * , q value <  0.001 calculated using the Mann Whitney test corrected for multiple testing by using FDR.  
(b) Phospholipid synthesis, via the Kennedy pathway, and degradation, through the action of phospholipase A2 
(PLA2). PC: phosphatidylcholine; PE: phospohatidylethanolamine; phospholipid, DG: diacylglyceride;  
CPT: 1,2-diacylglycerol cholinephosphotransferase; EPT: 1,2-diacylglycerol ethanolaminephosphotransferase.
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models is the use of well-defined objects (model compounds) representative of each of the groups (toxicity mech-
anisms) that are to be studied; eventually, these compounds will be used to train the model and will define its 
consistency. Representative compounds of the three mechanisms of hepatotoxicity (i.e., steatosis, phospholipi-
dosis and oxidative stress) were selected based on an exhaustive literature research and on our own data, all the 
model drugs can cause toxicity directly11,28. The simple experimental design consisted of 24 h of cells monolayers 
exposure to low drug concentrations (below or close to the IC10 value) at which toxic effects are observed in the 
absence of significant cell death. Such an approach allowed us to capture the initial specific effects of the drugs 
on cell metabolism/physiology as longer times or higher concentration exposures may lead to the appearance of 
non-specific damages or adaptation responses not directly related to the primary toxic effect. Nonetheless, drugs 
concentrations were below 100-fold their Cmax (therapeutically active average plasma maximum concentration 
values upon single-dose administration at commonly recommended therapeutic doses), and thus the observed 
hepatotoxic effects are manifested at a concentration which is considered to be biologically relevant with respect 
to the one at which the liver is exposed upon administration of therapeutic doses29. To ensure a wide metabolomic 
coverage, cell extracts were analyzed by a metabolite profiling approach that provides the detection of both polar 
and lipid compounds20,21.

The rich holistic metabolomic MS data generated was subjected to both non-supervised (i.e. PCA) and super-
vised (i.e. PLS-DA) multivariate data analysis in a search of discriminant metabolomic patterns contributing to 
either generic or mechanism-specific hepatotoxic effects (Fig. 1). The results show that the analytical strategy 

Figure 5. Metabolic alterations related to fatty acids and triacylglycerides metabolism. (a) Boxplots 
showing the altered metabolites. Boxes denote interquartile ranges, lines denote medians and whiskers denote 
10th and 90th percentiles. Metabolite relative abundance, expressed as ratio or log-transformed, is calculated 
by referring metabolite peak intensity to a constant concentration of internal standard per mg of tissue. Green: 
control (C); blue: oxidative stress (OS); red: phospholipidosis (P); purple: steatosis (S). * , q value <  0.05;  
* * , q value <  0.01; * * * , q value <  0.001 calculated using the Mann Whitney test corrected for multiple testing 
by using FDR. (b) Fatty acids and triacylglycerides metabolism in the liver. DG: diacylglyceride; FA: fatty acid; 
MG: monoacylglyceride; TG: triacylglyceride; VLDL: very low-density lioprotein.
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succeeded in accomplishing both objectives, i.e. not only were gross/common metabolomic patterns causative 
of non-specific toxicity detected, but slight subtle mechanism-sensitive changes were appreciated (Fig. 1f,g). To 
deepen the knowledge on the alterations caused by each specific group of hepatotoxicants, pairwise comparisons 
(i.e. control vs. each hepatotoxicity mechanism) were performed (Fig. 2), which led to the identification of specific 
markers related to each toxicity mechanism (Supplementary Tables S2 and S3).

Redox homeostasis disruption is a common effect in many drug-induced adverse effects. The GSH/GSSG pool 
is the principal redox buffer within the cell30, and changes in this ratio are associated with early oxidative damage 
events31. A low GSH/GSSG ratio was observed in all the mechanisms (Fig. 3). Accordingly, high levels of CSSG, a 
marker of oxidative damage32, and other metabolites involved in GSH synthesis and recycling via the γ -glutamyl 
cycle (i.e. γ -glutamyl-glutamate, γ -glutamyl-glutamine, glutamate and glutamine), were also observed in the case 
of drugs exerting their toxicity via oxidative stress (Fig. 3). A targeted analysis revealed a dose-dependent decrease 
in the GSH/GSSG ratio for all hepatotoxic drugs that was accompanied by a dose-dependent increase in the levels 
of ophthalmic acid (Supplementary Figure S3), a non-sulfur-containing analog of GSH that has been proposed as 
a marker of oxidative stress and GSH depletion33. The abovementioned changes, in conjunction with the altered 
levels of acylcarnitines, FA and TG, point to mitochondria as the primary target of drug-induced damage. The 
oxidative processes that take place in mitochondria (along with the presence of unprotected mtDNA) make them 
sensitive targets of oxidative damage34. A direct consequence of mitochondrial damage is the impairment of those 
metabolic pathways that take place in the mitochondria, including FA β -oxidation. This situation results in the 
accumulation of FA and intermediates of FA oxidation such as acylcarnitines. FA can either be esterified into TG 
or remain in its free form; the latter contributes to mitochondrial dysfunction and increases oxidative stress34. 
Moreover, FA β -oxidation inhibition can lead to reduced ATP levels, thus impairing GSH biosynthesis, which is 
produced from glutamate, cysteine and glycine in two ATP-dependent steps (Fig. 3).

The liver plays a key role in fat metabolism, and excessive drug-induced lipid accumulation may provoke 
important lesions. Drug-induced steatosis is often reversible, but the presence of certain drugs may exacerbate 
or precipitate its progression to more severe conditions as steatohepatitis and cirrhosis. The accumulation of TG 
inside hepatic cells is the hallmark of hepatic steatosis. Different mechanisms leading to drug-induced hepatic 
steatosis have been identified; among them, the impairment of FA β -oxidation due to mitochondrial disturbances 
is of special relevance28,35. There is substantial evidence that FA can directly cause toxicity by increasing oxida-
tive stress and through the activation of inflammatory pathways36, therefore, the accumulation of FA as TG is 
thought to be an adaptive and protective response of hepatocytes to excessive availability of free FA in the liver 
and its associated liver toxicity37. Accordingly, increased levels of DG, which suggest an increased flux of FA to 
TG synthesis, were also observed (Fig. 5). The increased levels of DG and phosphocholine could lead to higher 
rates of phosphatidylcholine biosynthesis via the CDP-choline pathway (i.e. Kennedy pathway)38,39, thus result-
ing in increased levels of PL, as observed (Fig. 4). Impairment of FA β -oxidation by steatogenic drugs can lead 
to an enhancement of extramitochondrial FA oxidation, thus promoting higher rates of ROS production and 
lipid peroxidation40. Oxidative stress has been shown to be an early event after lipid accumulation in the liver in 

Figure 6. Overview of the PLS-DA model aimed at the discrimination among the different mechanisms of 
hepatotoxicity. The PLS-DA model was built using three latent variables and the top- 26 ranked variables based 
on the model development subset with data obtained from the metabolomic analysis of HepG2 treated with 
either non-toxic or hepatotoxic compounds acting through different mechanism of hepatotoxicity (i.e. oxidative 
stress, phospholipidosis and steatosis). (a) Scores plot. The lines denote 95% confidence interval Hotelling’s 
ellipses for each class. Green: non-toxic; blue: oxidative stress; red: phospholipidosis; purple; steatosis. Small 
spheres correspond to samples used to develop the model. Larger spheres correspond to the PLS-DA projection 
of the external validation samples, denoted as test samples and colored based on their predicted class.  
(b) Figures of merit of the PLS-DA model.
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patients with steatosis41. Accordingly, a decrease in GSH levels and the GSH/GSSG ratio as well as an increase in 
CSSG were observed in HepG2 cells exposed to steatosis-inducing drugs (Fig. 3). To further assess the biological 
relevance of these results, the changes induced in the hepatic metabolome of rats treated with a steatosis-inducing 
drug (i.e. tetracycline) were evaluated (Supplementary Figure S4). A total of 98 metabolites were found to be 
altered in the liver of rats as a result of the treatment, eight of which were common to those obtained in HepG2 
cells (Supplementary Figure S5). Interestingly, despite the biological differences between the two experimental 
models, most of the metabolites that showed similar trends and significance were among the top-ranked discri-
minant variables (Supplementary Table S6) and similar trends were also observed with respect to the changes in 
the main classes of lipids (Supplementary Table S7). Overall, the results pointed to a similar mechanism of toxicity 
although the contributions of particular factors (i.e. oxidative damage) may differ between the biological models.

Over 50 marketed drugs have been reported to induce phospholipidosis in different tissues, including the 
liver35. Although drug-induced phospholipidosis is often reversible and there is no definitive evidence for its 
toxicological implications, it is considered an adverse side finding by regulatory agencies. The most characteristic 
alteration associated with phospholipidosis is the excessive accumulation of PL; however, this hallmark was not 
reproduced under our experimental conditions (24 h incubation with sub-lethal concentrations of the drugs) 
and only slight but non-significant increases in PL were observed in HepG2 cells. Phospholipidosis is a chronic 
process and PL accumulation in the liver is only observed after long-term/repeated treatment with the drug35. The 
observed decrease in LysoPL and in the LysoPL/PL ratio can be interpreted as an inhibition of the degradation of 
PL that would ultimately lead to excessive accumulation (Fig. 4). Indeed, impaired PL degradation by lysosomal 
phospholipases seems to be the principal mechanism of this process35,42. Although the mechanism responsible 
for this inhibition is unknown, it has been suggested that the drug can bind to PL, thus resulting in the formation 
of complexes that are either resistant to breakdown or can act as enzyme (phospholipase) inhibitors43. As an 
alternative mechanism, the accumulation of phospholipidosis-inducing drugs (usually cations) can neutralize 
the anionic surface charge in lysosomal lipid bilayers required for phospholipase activity44. Other studies have 
suggested that not only impaired phospholipase activity, but also alterations in lysosomal enzyme transport and 
PL or cholesterol biosynthesis are the mechanisms likely involved in the development of drug-induced phospho-
lipidosis24. Besides the alterations in PL and LysoPL levels, increases in TG and OS markers were also observed in 
HepG2 cells treated with phospholipidosis-inducing drugs (Figs 3 and 5). It is known that some drugs that cause 
phospholipidosis, especially cationic amphiphilic drugs (CADs), can also induce mitochondrial damage. The 
complex structure and physicochemical characteristics of mitochondria (e.g., double membrane, mitochondrial 
membrane potential) facilitate the progressive accumulation of CADs, thus impairing their function35,45, which 
could lead to the induction of oxidative stress and steatosis46.

Transcriptomic-based analyses or cell imaging technology (i.e. high-content screening (HCS) have been 
applied to study the hepatotoxicity induced by drugs, including some of the compounds tested in our study9,46–48. 
Reasonable results have been reported (both in terms of sensitivity and specificity) when the aim is to differentiate 
between non-toxic and hepatotoxic compounds9 or even among drugs acting through a specific mechanism of 
hepatotoxicity as may be the case of steatosis48 or phospholipidosis24. However, only few studies have attempted 
to develop in vitro assays to classify drugs according to their main mechanism of toxicity10,11,25. A recent study 
revealed that transcriptomic profiles of HepG2 cells accurately classified known cholestasis-inducing drugs and 
non-hepatotoxic compounds, but predictions of other mechanisms of toxicity were not performed25. Other stud-
ies employed HCS alone or in combination with other mono-parametric tests10,11. HCS achieved highly satisfac-
tory results, but for some compounds a high concentration was required (higher than the ones used in the present 
study and above 100x Cmax) to obtain a positive result. Moreover, in comparison to metabolic profiling HCS can 
provide only information about a few cellular parameters that need to be previously set up and require more than 
a single assay (assayed in parallel cells) to explore different mechanisms of drug-induced hepatotoxicity11,48. One 
of the key advantages of using holistic approaches is that they report a more comprehensive molecular snapshot 
of the systems under study. Particularly, metabolomics offers the closest “omics” analysis of cell phenotype, which 
provides valuable information about early toxic events and how they trigger subsequent changes in cell metabolic 
pathways. Obtaining wide metabolome coverage is an issue of special relevance to obtain the broadest overview 
of the system/situation under study. One key issue in the development of predictive models is the selection of the 
minimum number of variables (metabolites) that accomplishes a desired level of performance in terms of predic-
tion or explanation; that is, the most parsimonious model. Data reduction helps in model simplification, noise 
elimination and the maximization of inter-group differences. Furthermore, the use of a low number of variables 
facilitates the later development of target quantitative analysis of the identified discriminating variables. This 
strategy was followed to develop a PLS-DA model with 26 variables, which was able to classify toxic drugs accord-
ing to their main mechanism of hepatotoxicity, showing outstanding figures of merit (Fig. 6). The model was 
first mathematically evaluated by cross validation and class permutation testing, and showed proper robustness 
and consistency. To circumvent overoptimistic results due to the use of the same samples for model building and 
validation, the model was further evaluated by the use of an external validation set of samples, showing excellent 
results as all the samples used were correctly assigned with different degrees of confidence.

In summary, our main goal was to show that MS-based metabolite profiling can become a valuable tool to 
classify and investigate mechanism-specific hepatotoxic responses induced by drugs in a liver-derived cell model. 
Unique metabolomic fingerprints associated with oxidative damage, steatosis, and phospholipidosis were deci-
phered and used to develop a model, which was able to screen and classify hepatotoxicity based on the toxicants 
mode of action, even in the absence of cell death. The development of fast, quantitative and targeted analysis of the 
markers should increase throughput and minimize sample requirements, thus consolidating the incorporation of 
targeted metabolomics into the pre-clinical testing framework. This approach also allowed us to gain new insights 
into the molecular events underlying hepatotoxicity and to suggest toxicity-related pathways. These results need 
to be further confirmed using a larger number of compounds, and other in vitro/in vivo models should be tested 
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for extrapolation to humans. In the near future, the approach described here could become a routine tool in early 
drug development for hepatotoxicity screening, helping researchers to understand the mechanisms underlying 
drug-induced liver damage, which may eventually lead to the development of safer drugs.

Materials and Methods
Materials. All LC solvents (i.e. water, methanol, acetonitrile and isopropanol) were of LC-MS grade and 
were purchased from Fisher Scientific (Loughborough, U.K.). All LC-MS additives (i.e. formic acid and ammo-
nium acetate) and the analytical standards (when available) were acquired from Sigma-Aldrich (Madrid, Spain). 
Lithocholic acid-D4 (LCA-D4) was obtained from Steraloids (Newport, USA). Phenylalanine-D5 (Phe-D5) was 
purchased from Cambridge Isotope Laboratories (Tewksbury, USA).

Culture and treatment of HepG2 cells. HepG2 cells were routinely grown in culture grade flasks at 37 °C 
under a humidified atmosphere 5% CO2/95% air in Ham’s F-12/Leibovitz L-15 (1:1, v/v) supplemented with 7% 
fetal bovine serum, 50 U/mL penicillin and 50 μ g/mL streptomycin. The medium was renewed every 2 days. Cells 
reaching 70–80% confluence were ready to be used or passaged. For subculturing purposes, cells were detached 
by treatment with 0.25% trypsin/0.02% EDTA at 37 °C49. For the metabolomic studies, cells were seeded at a den-
sity of 8 ×  104 cells/cm2 on 6-well culture dishes.

Ten compounds were selected as model hepatotoxicity inducers based on the data available in the literature28 
(Table 1). Two compounds with no reports of hepatotoxicity were used as the negative controls. The stock solu-
tions of the test compounds were prepared in DMSO and were freshly diluted in the culture medium to obtain 
the desired final concentration. The final DMSO concentration in the culture medium never exceeded 0.5% (v/v). 
Two additional controls were employed (i.e. culture medium and DMSO 0.5% (v/v) in culture medium). Only 
sublethal concentrations of the compounds were used11,20,50 (Table 1). HepG2 cells (70–80% confluence) were 
treated for 24 h with the compounds. Three biological replicates were employed for each condition.

Cell processing and analysis using LC-MS-based untargeted metabolomics. Metabolomic anal-
yses were performed in a Waters Acquity UPLC chromatograph hyphenated to a Waters Synapt HDMS Q-ToF 
mass spectrometer (Waters, UK). Cells were processed and analyzed by following a previously optimized ana-
lytical strategy20,21. In summary, different metabolome extractions were combined to obtain polar and nonpolar 
fractions, which were then analyzed separately by hydrophilic interaction liquid chromatography (HILIC) and 
reversed-phase (RP) liquid chromatographic techniques (see Supplementary Information).

Quality assurance strategy. Blank samples and a pooled QC sample were employed to monitor LC-MS 
system performance. Blank samples were obtained by applying the extraction protocol over empty cultured plates 
and were employed to identify those background ions that were associated either with the extraction solvents 
or chromatographic separation (mobile phases plus column bleeding). The pooled QC sample was injected at 
the beginning of the analysis and intercalated every 10 study samples to assess instrument stability in terms of 
retention time, peak area and mass accuracy for each IS added to the QC samples. Study samples were analyzed 
in randomized order. The quality assurance strategy has been provided in detail elsewhere41.

MS data preprocessing and metabolite identification. Data processing was performed using the 
MZMine v.2.9.1 free software51. Data were normalized according to both the response obtained by the IS added 
to each sample during the preparation process22,41 and the total amount of biological sample, assessed by the total 
amount of protein16,20,21. Metabolite identification was performed by the query of the exact mass of the detected 
features against online databases within a certain mass range (± 10 ppm). The online databases used were: the 
Human Metabolome Database (HMDB)52, the LIPID MAPS-Nature Lipidomics Gateway53 and the Metlin  
database54. The identity of the metabolites of interest was confirmed by comparing the MS/MS spectra of the 
selected features with those of the proposed metabolites in online databases HMDB52, Metlin54 and MassBank55. 
The identities of the selected metabolites were further confirmed by using authentic standards whenever available. 
Only those features that matched a known metabolite identity were further submitted to the data analysis process. 
The degree of confidence in the identification was defined as specified by the Metabolomics Standards Initiative56. 
To perform the data analysis, all the information for a given sample (i.e. the information provided by the different 
analytical conditions) was joined to a single matrix, which comprised all the data available for each biological 
sample, and the mean value for the three biological replicates performed for each condition was calculated22. Each 
drug concentration was considered as an independent entity.

Statistical analysis & data interpretation. All the statistical analyses and data plots were run with the 
free software R57. PCA was used to visualize the natural interrelationship among the samples, either all at once or 
by performing pairwise comparisons (i.e., control vs. each toxicity mechanism). Those features that met at least 
one of the following criteria were considered as discriminant: i) q value <  0.05, p value calculated using Mann 
Whitney test (for pairwise comparisons, i.e. control vs. each toxicity mechanism or control compounds vs. hepa-
totoxins) or ANOVA (analysis of variance, for multi-group comparisons, i.e. identification of mechanism-specific 
differences in which a 4-group comparison was performed) with the Benjamini-Hochberg (false discovery rate, 
FDR) correction for multiple testing; ii) VIP value > 1.2, by PLS-DA modeling58. Pathway analysis tools were 
used for biological data interpretation and for toxicity-related pathways unraveling59,60. PLS-DA was employed 
to develop classificatory/predictive models based on the altered metabolomic patterns aimed to discriminate 
between non-hepatotoxic compounds and those acting through each of the abovementioned mechanisms of 
hepatotoxicity (Table 1). The quality of the PLS-DA models was verified by the typical cross-validation proce-
dure by leaving one-fifth of samples out of each round. In each round, four-fifths of the data are used to train 
the PLS-DA model and the remaining one-fifth is used as test set, the procedure is repeated until all the samples 
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have participated in the test set. Model parameters used to evaluate model performance were total Y explained 
variance (i.e., R2); predictable Y variation (i.e., Q2); prediction accuracy (evaluated as the misclassification error 
rate); and AUROC or multiclass AUROC61, based on the prediction, at each round, of the one-fifth of samples 
that are left out of model training. To further assess model consistency and performance, a response permutation 
test (n =  1000) was applied. In brief, permutation testing compares the original model’s goodness of fit with the 
values obtained after class randomization23. In the case of the development of the PLS-DA model aimed at the 
discrimination between the different mechanisms of hepatotoxicity the data was split into two different sub-
sets, 80% of samples were utilized in model development, while 20% of the samples (equally distributed among 
classes) were reserved as external validation set (Supplementary Table S4). Thus, only the samples belonging to 
the model development set participated in model building and optimization. A variable selection procedure was 
implemented to find the most parsimonious model. To this end, variables were ranked according to their VIP 
value and PLS-DA models were built with increasing number of variables. The optimum number of variables 
was selected as the one providing the highest figures of merit. Model validation was performed both by the use 
of permutation testing and by the assessment of an external validation set of samples. The data analysis workflow 
is depicted in Supplementary Figure S6. In all the cases, data sets were log-transformed, mean-centered and 
unit-variance-scaled prior to multivariate data analysis.
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