241 research outputs found

    The value function of an asymptotic exit-time optimal control problem

    Full text link
    We consider a class of exit--time control problems for nonlinear systems with a nonnegative vanishing Lagrangian. In general, the associated PDE may have multiple solutions, and known regularity and stability properties do not hold. In this paper we obtain such properties and a uniqueness result under some explicit sufficient conditions. We briefly investigate also the infinite horizon problem

    Regularity properties of attainable sets under state constraints

    Get PDF
    The Maximum principle in control theory provides necessary optimality conditions for a given trajectory in terms of the co-state, which is the solution of a suitable adjoint system. For constrained problems the adjoint system contains a measure supported at the boundary of the constraint set. In this paper we give a representation formula for such a measure for smooth constraint sets and nice Hamiltonians. As an application, we obtain a perimeter estimate for constrained attainable sets

    Inverse coefficient problems for a transport equation by local Carleman estimate

    Get PDF
    We consider the transport equation ∂tu(x,t)+(H(x) - ∇u(x,t))+p(x)u(x,t)=0 in Ω ×(0,t) where Ω ⊂ ℝn is a bounded domain, and discuss two inverse problems which consist of determining a vector-valued function p(x) or a real-valued function Ω by initial values and data on a subboundary of Ω. Our results are conditional stability of Hölder type in a subdomain D provided that the outward normal component of H(x) is positive on ∂D∩∂Ω. The proofs are based on a Carleman estimate where the weight function depends on H

    Homogenization and enhancement for the G-equation

    Full text link
    We consider the so-called G-equation, a level set Hamilton-Jacobi equation, used as a sharp interface model for flame propagation, perturbed by an oscillatory advection in a spatio-temporal periodic environment. Assuming that the advection has suitably small spatial divergence, we prove that, as the size of the oscillations diminishes, the solutions homogenize (average out) and converge to the solution of an effective anisotropic first-order (spatio-temporal homogeneous) level set equation. Moreover we obtain a rate of convergence and show that, under certain conditions, the averaging enhances the velocity of the underlying front. We also prove that, at scale one, the level sets of the solutions of the oscillatory problem converge, at long times, to the Wulff shape associated with the effective Hamiltonian. Finally we also consider advection depending on position at the integral scale

    Quasivariational solutions for first order quasilinear equations with gradient constraint

    Get PDF
    We prove the existence of solutions for an evolution quasi-variational inequality with a first order quasilinear operator and a variable convex set, which is characterized by a constraint on the absolute value of the gradient that depends on the solution itself. The only required assumption on the nonlinearity of this constraint is its continuity and positivity. The method relies on an appropriate parabolic regularization and suitable {\em a priori} estimates. We obtain also the existence of stationary solutions, by studying the asymptotic behaviour in time. In the variational case, corresponding to a constraint independent of the solution, we also give uniqueness results

    Some flows in shape optimization

    Get PDF
    Geometric flows related to shape optimization problems of Bernoulli type are investigated. The evolution law is the sum of a curvature term and a nonlocal term of Hele-Shaw type. We introduce generalized set solutions, the definition of which is widely inspired by viscosity solutions. The main result is an inclusion preservation principle for generalized solutions. As a consequence, we obtain existence, uniqueness and stability of solutions. Asymptotic behavior for the flow is discussed: we prove that the solutions converge to a generalized Bernoulli exterior free boundary problem

    Compensated convexity and Hausdorff stable extraction of intersections for smooth manifolds

    Get PDF
    We apply compensated convex transforms to define a multiscale Hausdorff stable method to extract intersections between smooth compact manifolds represented by their characteristic functions or as point clouds embedded in Rn. We prove extraction results on intersections of smooth compact manifolds and for points of high curvature. As a result of the Hausdorff–Lipschitz continuity of our transforms, we show that our method is stable against dense sampling of smooth manifolds with noise. Examples of explicitly calculated prototype models for some simple cases are presented, which are also used in the proofs of our main results. Numerical experiments in two- and three-dimensional space, and applications to geometric objects are also shown

    Generalized Ricci Curvature Bounds for Three Dimensional Contact Subriemannian manifolds

    Get PDF
    Measure contraction property is one of the possible generalizations of Ricci curvature bound to more general metric measure spaces. In this paper, we discover sufficient conditions for a three dimensional contact subriemannian manifold to satisfy this property.Comment: 49 page

    Status of the CMS magnet (MT17)

    Get PDF
    The CMS experiment (Compact Muon Solenoid) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive features include a 4 T superconducting solenoid with a free bore of 6 m diameter and 12.5-m length, enclosed inside a 10 000-ton return yoke. The magnet will be assembled and tested in a surface hall at Point 5 of the LHC at the beginning of 2004 before being transferred by heavy lifting means to an experimental hall 90 m below ground level. The design and construction of the magnet is a common project of the CMS Collaboration. The task is organized by a CERN based group with strong technical and contractual participation from CEA Saclay, ETH Zurich, Fermilab, INFN Genova, ITEP Moscow, University of Wisconsin and CERN. The magnet project will be described, with emphasis on the present status of the fabrication. (15 refs)
    • 

    corecore