
Zhang, Kewei and Orlando, Antonio and Crooks, Elaine 
(2015) Compensated convexity and Hausdorff stable 
extraction of intersections for smooth manifolds. 
Mathematical Models and Methods in Applied Sciences, 
25 (05). pp. 839-873. ISSN 1793-6314 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/40900/9/ZOC-Paper2-m3as%20Zhang%20AAM.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/78911056?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


September 20, 2014 10:40 WSPC/INSTRUCTION FILE ZOC-Paper2-
m3as

Mathematical Models and Methods in Applied Sciences
c© World Scientific Publishing Company

COMPENSATED CONVEXITY AND HAUSDORFF STABLE

EXTRACTION OF INTERSECTIONS FOR SMOOTH MANIFOLDS

KEWEI ZHANG

School of Mathematical Sciences, University of Nottingham, University Park,

Nottingham, NG7 2RD, UK

kewei.zhang@nottingham.ac.uk

ANTONIO ORLANDO

Inst. de Estructuras & Dept. de Mecánica, Universidad Nacional de Tucumán

Av. Independencia 1800, San Miguel de Tucumán, Argentina

aorlando@herrera.unt.edu.ar

ELAINE CROOKS

Department of Mathematics, Swansea University

Singleton Park, Swansea, SA2 8PP, UK

e.c.m.crooks@swansea.ac.uk

Received (Day Month Year)
Revised (Day Month Year)

Communicated by (xxxxxxxxxx)

We apply compensated convex transforms to define a multiscale Hausdorff stable method
to extract intersections between smooth compact manifolds represented by their char-
acteristic functions or as point clouds embedded in R

n. We prove extraction results on
intersections of smooth compact manifolds and for points of high curvature. As a result
of the Hausdorff-Lipschitz continuity of our transforms, we show that our method is
stable against dense sampling of smooth manifolds with noise. Examples of explicitly
calculated prototype models for some simple cases are presented, which are also used
in the proofs of our main results. Numerical experiments in two and three-dimensional
space, and applications to geometric objects are also shown.
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1. Introduction

In this paper we apply compensated convex transforms25,26,27 to define a Hausdorff

stable multiscale method for extracting transversal intersections between smooth

compact manifolds embedded in R
n represented by characteristic functions or by
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point clouds. If we denote by M ⊂ R
n the union of finitely many smooth com-

pact manifolds Mk, for k = 1, . . . ,m, we are interested in extracting the set of

intersection points among the manifolds Mk. In R
3 this is exactly the surface-to-

surface and surface-to-curve intersection problem which has been studied exten-

sively in computer-aided geometric design under the general terminology of shape

interrogation.19

Finding the intersection of smooth compact manifolds is an important field not

only for applications in engineering but also as a geometrical problem by itself.

The traditional approach to surface-to-surface intersection problems is to consider

parameterized polynomial surfaces and to solve systems of algebraic equations nu-

merically based on real algebraic geometry.19 The application of these methods

typically requires some topological information such as triangle mesh connectivity

or a parameterization of the geometrical objects, hence they are difficult to imple-

ment in the case of free-form surfaces and of manifolds represented, for instance, by

point clouds. For the latter case, other types of approaches are used. Such methods

aim at identifying, according to some criteria, the points that are likely to belong

to a neighborhood of the sharp feature. In Ref. 24 the criterion is based around the

definition of a Gauss map clustering on local neighborhoods, which is then followed

by a selective iterative process based on some sensitivity parameters; in Ref. 10 the

borders of the various surface patches are extracted using a first order segmenta-

tion that identifies the candidate feature points that are subsequently processed as

a graph, whereas in Ref. 9 the candidate points are selected using local normal esti-

mates, local principle component analysis and tensor voting. All the results in these

works are mostly justified by numerical experiments, and their stability properties,

under dense sampling of the set M , are not known.

In this paper we are concerned with problems of geometric intersections between

geometric objects of possibly different dimensions that can be either continuous

or point-sampled. Using the compensated convex transforms, we will define the

intersection filter Iλ(·,M) of scale parameter λ > 0 and show that it is able to

extract mainly two types of geometric singularities:

(i) Non-tangential surface-to-surface intersections under the transversal con-

dition, and

(ii) Boundary points shared by two smooth manifolds.

Let f : Rn 7→ R be a bounded function, we recall that the quadratic lower and

upper compensated convex transform25 (lower and upper transform for short) for

a given λ > 0 are defined for x ∈ R
n by

Cl
λ(f)(x) = co

[

λ| · |2 + f
]

(x)− λ|x|2 ; Cu
λ (f)(x) = λ|x|2 − co

[

λ| · |2 − f
]

(x) ,

(1.1)

with |x| the Euclidean norm of x ∈ R
n and co[g] the convex envelope23,11 of a

function g : Rn 7→ R bounded from below.
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From (1.1), it also follows thata Cl
λ(f)(x) is the envelope of all the quadratic

functions with fixed quadratic term λ|x|2 that are less than or equal to f , that is,

Cl
λ(f)(x) = sup

{

−λ|x|2 + ℓ(x) : −λ|y|2 + ℓ(y) ≤ f(y) for all y ∈ R
n and ℓ affine

}

,

(1.2)

whereas Cu
λ (f)(x) is the envelope of all the quadratic functions with fixed quadratic

term λ|x|2 that are greater than or equal to f , that is,

Cu
λ (f)(x) = inf

{

λ|x|2 + ℓ(x) : f(y) ≤ λ|y|2 + ℓ(y) for all y ∈ R
n and ℓ affine

}

.

(1.3)

The extraction filter Iλ(·; M) is then defined as follows.

Definition 1.1. Let K ⊂ R
n be a non-empty compact set. We define the intersec-

tion extraction transform of scale λ > 0 by

Iλ(x; K) =
∣

∣

∣
Cu

4λ(χK)(x) − 2
(

Cu
λ (χK)(x) − Cl

λ(C
u
λ (χK))(x)

)∣

∣

∣
, x ∈ R

n . (1.4)

By recalling from Ref. 27 the definition of the stable ridge transform of scale λ

and τ for the characteristic function χK , with K ⊂ R
n compact set,

SRτ,λ(χK) = Cu
λ (χK)− Cl

τ (C
u
λ(χK)) , (1.5)

we can then express Iλ(x; K) in terms of SRλ,τ (χK)(x) for τ = λ as

Iλ(x; K) =
∣

∣

∣
Cu

4λ(χK)(x)− 2SRλ,λ(χK)(x)
∣

∣

∣
, x ∈ R

n , (1.6)

which will be used to prove the Hausdorff-Lipschitz continuity of Iλ(·; K).

The definition of the transform Iλ(·, K) is motivated by the following example

which shows that Iλ(·; K) can be used to remove or filter out ‘regular points’.

Example 1.2. Consider the characteristic function χ{0}(x) of the single point set

{0} ⊂ R. The following expressions of the compensated convex transforms are easy

to calculate for λ > 0 and τ > 0.

Cu
λ (χ{0})(x) =







λ(1/
√
λ− |x|)2, |x| ≤ 1/

√
λ,

0, |x| ≥ 1/
√
λ;

Cl
τ (C

u
λ (χ{0}))(x) =















τ

λ+ τ
− τx2, |x| ≤

√
λ

λ+ τ
,

Cu
λ(χ{0})(x), |x| ≥

√
λ

λ+ τ
.

Thus

Cu
λ(χ{0})(x) − Cl

τ (C
u
λ (χ{0}))(x) =

λ

λ+ τ
Cu

(λ+τ)2/λ(χ{0})(x),

aWe are grateful to an anonymous referee of an earlier version of this manuscript for pointing out
this characterization of the compensated convex transforms.
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so that

Cu
(λ+τ)2/λ(χ{0})(x)−

λ+ τ

λ
(Cu

λ (χ{0})(x) − Cl
τ (C

u
λ (χ{0})))(x) = 0

for all x ∈ R. Therefore if we consider the special case λ = τ , we obtain

Cu
4λ(χ{0})(x) − 2

(

Cu
λ (χ{0})(x) − Cl

λ(C
u
λ (χ{0}))(x)

)

= 0,

that is, Iλ(x; {0}) = 0 for all x ∈ R.

While Example 1.2 can be generalised in a straightforward manner to charac-

teristic functions of a single point or a single straight line in R
2, we will further

generalise this example to ‘regular directions’ and ‘regular points’ on manifolds K

and verify that at these points Iλ(x; K) = 0. This will permit, therefore, one to

filter out the ‘regular points’ of the manifold and define the set of points x such

that Iλ(x; K) > 0 as intersection points and high curvature points of scale λ.

For transversal intersection points of smooth manifolds, we will indeed prove that

Iλ(x; K) > 0.

After this brief description, for the method we propose we claim the following:

(i) The intersection filter Iλ(·; K) does not require any knowledge of tangential

or normal directions of the underlying manifold, nor does its evaluation need

any neighbourhood search even for point-sampled manifold;

(ii) The intersection filter Iλ(·; K) is Hausdorff stable (see Theorem 3.1 below),

so that for data sets under dense sampling and with small noise perturba-

tion, it is still possible to extract intersection points;

(iii) The evaluation of Iλ(·; K) relies on blind convexity based operations which

are, in fact, local and do not involve heavy logical operations;

(iv) There is a rigorous mathematical theory underpinning our method;

(v) We have explicitly calculated prototype models that justify and verify our

method;

(vi) There are fast numerical schemes which allows the implementation of

Iλ(·; K).

As a conclusion of this introduction and to shed further light to the method we

propose, it is useful to review the definition of Iλ(·; K) within the context of mor-

phological filtering.21 This is possible because compared with the basic operations

in mathematical morphology,20,22 the lower and upper transforms can be viewed as

‘one-step’ morphological opening and closing, respectively.27 They, in fact, coincide

with the critical mixed Moreau envelopes, that is,

Cl
λ(f)(x) = Mλ(Mλ(f))(x) and Cu

λ (f)(x) = Mλ(M
λ(f))(x), (1.7)

where

Mλ(f)(x) = inf{f(y) + λ|y − x|2, y ∈ R
n} and

Mλ(f)(x) = sup{f(y)− λ|y − x|2, y ∈ R
n}
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are the lower and upper Moreau envelopes,17,18,15,2,8 respectively. If we denote by

bλ(x) = −λ|x|2 the quadratic structuring function, introduced for the first time in

Refs. 12, 4, 13, then with the notation of Refs. 20, 22, we have

Mλ(f)(x) = inf
y∈Rn

{f(y)− bλ(y − x)} =: f ⊖ bλ ,

Mλ(f)(x) = sup
y∈Rn

{f(y) + bλ(y − x)} =: f ⊕ bλ

that is, the Moreau lower and upper envelopes can be viewed as greyscale erosion

and dilation with quadratic structuring function, respectively.16 Compared with

(1.7) we have therefore

Cl
λ(f) = (f ⊖ bλ)⊕ bλ and Cu

λ (f) = (f ⊕ bλ)⊖ bλ ,

hence, by accounting for the definition (1.4) of Iλ(·; K), it follows

Iλ(·; K) =

∣

∣

∣

∣

∣

(χK ⊕ b4λ)⊖ b4λ−2

(

(χK ⊕ bλ)⊖ bλ−
(

(((χK ⊕ bλ)⊖ bλ)⊖ bλ)⊕ bλ

)

)
∣

∣

∣

∣

∣

.

Given such an interpretation for Iλ(·; K), the properties of Iλ(·; K) could therefore

be also analysed with the tools of the theory of morphological filtering.21

We finally observe that since lower and upper compensated convex transforms

are also parameterized semiconvex and semiconcave envelopes of the function f ,

respectively, in the viscosity sense7 the Hessians of Cl
λ(f(x)) and Cu

λ (f(x)) satisfy

yTD2Cl
λ(f)(x) · y ≥ −2|y|2λ, yTD2Cu

λ (f)(x) · y ≤ 2λ|y|2 (1.8)

for y ∈ R
n and · denoting the inner product in R

n. As a result, Cl
λ(f) has a

finite negative curvature lower bound and Cu
λ (f) has a finite positive curvature

upper bound. We may, therefore, view the compensated convex transforms also as

curvature based one-step morphological opening and closing.

An outline of the remaining parts of the paper is as follows. Section 2 contains

some definitions and recalls results from convex analysis and the theory of compen-

sated convex transforms as developed in Refs. 25, 27 which will be then used for the

proof of the main results. These are given in Section 3, where we state the Hausdorff

stability of the intersection filter Iλ(·; K) and describe its behaviour at the ‘regular’

and singular points of piecewise smooth compact manifolds. Section 4 consists of

two subsections. The first one contains some prototype models for which we are able

to obtain analytical expressions for I(·; K) which we use to verify the method we

propose. The second one, very briefly, reports some numerical experiments based on

a computer implementation of the filter Iλ(·; K) for different types of compact sets

K. The numerical examples highlight the effectiveness of the transform Iλ(·; K)

and its Hausdorff stability property against point samples. The proofs of the main

results are detailed in the final Section 5.
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2. Notation and Preliminaries

This section presents a brief overview of some basic results in convex analysis and

in the theory of compensated convex transforms that will be used in the sequel for

the proof of the main results; for a comprehensive account of convex analysis, refer

to Refs. 11, 23, and to Refs. 25, 27 for an account of the theory of compensated

convex transforms.

Proposition 2.1. Let f : Rn 7→ R be coercive in the sense that f(x)/|x| → ∞ as

|x| → ∞, and x0 ∈ R
n. Then

(i) The value co [f ] (x0) of the convex envelope of f at x0 ∈ R
n is given by

co [f ] (x0) = inf
i=1,...,n+1

{

n+1
∑

i=1

λif(xi) :

n+1
∑

i=1

λi = 1,

n+1
∑

i=1

λixi = x0,

λi ≥ 0, xi ∈ R
n

}

.

(2.1)

If, in addition, f is lower semicontinuous, the infimum is reached by some

(λ∗
i , x

∗
i ) for i = 1, 2, . . . , n+1 with (x∗

i , f(x
∗
i ))’s lying in the intersection of

a supporting plane of the epigraph of f , epi(f), and epi(f).

(ii) The value co [f ] (x0), for f taking only finite values, can also be obtained

as follows:

co [f ] (x0) = sup {ℓ(x0) : ℓ affine and ℓ(y) ≤ f(y) for all y ∈ R
n}
(2.2)

with the sup attained by an affine function ℓ∗ ∈ Aff(Rn).

We will also introduce the following local version of convex envelope at a point.

Definition 2.2. Let r > 0 and x0 ∈ R
n. Suppose f : B̄(x0; r) 7→ R is a bounded

function in B̄(x0; r). Then the value coB̄(x0;r) [f ] (x0) of the local convex envelope

of f at x0 in B̄(x0; r) is defined by

coB̄(x0;r) [f ] (x0) = inf
i=1,...,n+1

{

n+1
∑

i=1

λif(xi) :

n+1
∑

i=1

λi = 1,

n+1
∑

i=1

λixi = x0,

λi ≥ 0, |xi − x0| ≤ r, xi ∈ R
n

}

.

Definition 2.3. Given a non-empty subset E of R
n and δ > 0, we define the

δ-neighbourhood Eδ of E by

Eδ = {x ∈ R
n : dist(x; E) < δ} ,

where dist(x; E) = inf{|x− y|, y ∈ E}.

Note that Eδ is an open subset of Rn.
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Definition 2.4. Let E, F be non-empty subsets of R
n. The Hausdorff distance

between E and F is defined in Ref. 1 by

distH(E,F ) = inf
{

δ > 0 : F ⊂ Eδ and E ⊂ F δ
}

. (2.3)

We recall also the following ordering properties for compensated convex trans-

forms which can be found in Ref. 25:

Cl
λ(f)(x) ≤ f(x) ≤ Cu

λ(f)(x), x ∈ R
n , (2.4)

whereas for f ≤ g in R
n, we have that

Cl
λ(f)(x) ≤ Cl

λ(g)(x) and Cu
λ (f)(x) ≤ Cu

λ(g)(x), x ∈ R
n . (2.5)

Proposition 2.5. (Translation invariance property) For any f : Rn 7→ R bounded

below and for any affine function ℓ : Rn 7→ R, co[f + ℓ] = co[f ] + ℓ. Consequently,

both Cu
λ(f) and Cl

λ(f) are translation invariant against the weight function, that is

Cl
λ(f)(x) = co

[

λ|(·) − x0|2 + f
]

(x)− λ|x− x0|2 ,

Cu
λ (f)(x) = λ|x − x0|2 − co

[

λ|(·) − x0|2 − f
]

(x)

for all x ∈ R
n and for every fixed x0. Hence, at x0,

Cl
λ(f)(x0) = co[λ|(·) − x0|2 + f ](x0) , Cu

λ (f)(x0) = − co[λ|(·) − x0|2 − f ](x0) .

Fundamental is then for both theoretical and numerical developments, the fol-

lowing property on the locality of the compensated transforms (refer to Theorem

3.10 of Ref. 27).

Theorem 2.6. (The locality and density properties for bounded functions) Suppose

f : Rn 7→ R is bounded, satisfying |f(x)| ≤ M for some M > 0 and for all x ∈ R
n.

Let λ > 0 and x0 ∈ R
n. The following locality properties hold:

Cl
λ(f)(x0) = coB̄(x0;Rλ,M )[f + λ|(·) − x0|2](x0) ,

Cu
λ (f)(x0) = − coB̄(x0;Rλ,M )[λ|(·) − x0|2 − f ](x0)

with Rλ,M ≤ 2
√
2
√

M
λ , and coB̄(x0;Rλ,M )[g](x0) the value of the local convex envelope

of g at x0 in B̄(x0;Rλ,M ) defined according to Definition 2.2.

Remark 2.7. From Lemma 3.9 of Ref. 27, the result of Theorem 2.6 applied to

the characteristic function χE of a non-empty closed subset E ⊂ R
n specializes, for

any x0 ∈ R
n, as

Cu
λ (χE)(x0) = − coB̄(x0;Rλ)[λ|(·) − x0|2 − χE ](x0) , (2.6)

with coB̄(x;Rλ)[λ|(·) − x0|2 − χE ] the convex envelope taken in the ball B̄(x0;Rλ)

and the better estimate Rλ = (1 +
√
2)/

√
λ. This result can then be written as

Cu
λ (χE)(x0) = Cu

λ (χE∩B̄(x0;Rλ))(x0) (2.7)

for x0 ∈ R
n.
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We will need also the following characterization of the upper transform of the

characteristic function of a non-empty subset of Rn which was established in Ref. 27

(see therein Theorem 3.4).

Theorem 2.8. (Expansion Theorem) Let E ⊂ R
n be a non-empty set and let λ > 0

be fixed, then

Cu
λ (χE)(x)



















= 1 if x ∈ Ē

= 0 if x ∈ (E1/
√
λ)c

∈ (0, 1) if x ∈ E1/
√
λ \ Ē.

The following propositions will enable us to extend some of our prototype ex-

amples to higher dimensional spaces.

Proposition 2.9. (Separation of variable property) For x ∈ R
n, y ∈ R

m, let

f(x, y) = g(x) + h(y) with g : R
n 7→ R and h : R

m 7→ R both bounded below.

Then coRn+m [f ] = coRn [g] + coRm [h], where coRn+m [f ], coRn [g] and coRm [h] are the

convex envelopes of f , g and h in R
n+m, Rn and R

m, respectively. Hence, we have,

for all x ∈ R
n and y ∈ R

m,

Cl
Rn+m,λ(f)(x, y) = Cl

Rn,λ(g)(x) + Cl
Rm,λ(h)(y);

Cl
Rn+m,λ(f)(x, y) = Cl

Rn,λ(g)(x) + Cl
Rm,λ(h)(y) .

Proposition 2.10. (Partial Rotation Invariance property) Let f(x, y) be a bounded

function for (x, y) ∈ R
2 such that f is even in y ∈ R, that is, for all (x, y) ∈ R

2,

f(x, y) = f(x,−y). Let F : R× R
n 7→ R be defined by F (x, z) = f(x, |z|) for x ∈ R

and z ∈ R
n. Then

coRn+1 [F ](x, z) = coR2 [f ](x, |z|) ,

where coRn+1 [F ] and coR2 [f ] are the convex envelopes of F and f in R
n+1 and R

2,

respectively.

Since Iλ(·; K) is defined in terms of the mixed compensated compact transform

Cl
λ(C

u
λ (χK)), in the sequel to simplify calculations, it will be convenient to refer to

the distance based function introduced in Ref. 27

Dλ(x; K) := max{0, 1−
√
λdist(x; K)}, x ∈ R

n , (2.8)

given that (see Proposition 5.3 of Ref. 27)

Cu
λ(χK)(x) = Cu

λ(D
2
λ(·; K))(x), x ∈ R

n . (2.9)

Taking into account (2.9) and the ordering property of the compensated convex

transforms (2.4), we can then conclude that

Cu
λ(χK)(x) = Cu

λ(D
2
λ(·; K))(x) ≥ D2

λ(x; K) , x ∈ R
n , (2.10)



September 20, 2014 10:40 WSPC/INSTRUCTION FILE ZOC-Paper2-
m3as

Compensated Convexity and Stable Extraction of Intersections 9

and, using (2.5), that

Cl
λ(C

u
λ (χK))(x) ≥ Cl

λ(D
2
λ(·; K))(x) , x ∈ R

n . (2.11)

The next result will be useful in the construction of prototypes in R
3; see Remark

4.2 and Figure 2.

Proposition 2.11. Suppose m ≥ 1 and n ≥ 1. Let Km ⊂ R
m be a closed set and

define the set Kn
m = Km×R

n and its subset K0,n
m = Km×{0 ∈ R

n}. The set Kn
m is

referred to as the lift of Km in the larger space R
n+m while K0,n

m is the embedding

of Km into R
n+m. We have then the following:

(i) For Kn
m, we have

Cu
λ (χKn

m
)(x, z) = Cu

λ (χKm
)(x), x ∈ R

m, z ∈ R
n,

D2
λ((x, z); K

n
m) = D2

λ(x; Km), x ∈ R
m, z ∈ R

n,
(2.12)

where the right hand sides of the equalities are defined in R
m.

(ii) For K0,n
m , we have

Cu
λ (χK0,n

m
)(x, 0) = Cu

λ (χKm
)(x), x ∈ R

m, z ∈ R
n,

D2
λ((x, 0); K

0,n
m ) = D2

λ(x; Km), x ∈ R
m, 0 ∈ R

n,
(2.13)

where the right hand sides of the equalities are defined in R
m.

The following results on the Hausdorff-Lipschitz continuity of Cu
λ (χK) and

SRλ(χK) were established in Ref. 27 (see therein Theorem 5.5 and Theorem 5.9,

respectively) and will be used to prove the stability of the filter Iλ(x; K).

Theorem 2.12. (Hausdorff-Lipschitz continuity) Let E, F be non-empty compact

subsets of Rn. Assume λ > 0. Then for x ∈ R
n

|Cu
λ (χE)(x) − Cu

λ (χF )(x)| ≤ 2
√
λdistH(E,F ) ;

|SRλ,τ (χE)(x) − SRλ,τ (χF )(x)| ≤ 4
√
λdistH(E,F ) .

We will also need a simple Hausdorff-Lipschitz continuity property for the lower

transform of D2
λ(x; K), of which a proof is given in Section 5.

Lemma 2.13. Suppose λ > 0 and let E, F ⊂ R
n be non-empty and compact. Then

for x ∈ R
n

|Cl
λ(D

2
λ(·; E))(x) − Cl

λ(D
2
λ(·; F ))(x)| ≤ 2

√
λdistH(E, F ) .

3. Main Results

The first result of this section is the Hausdorff stability of the intersection filter

I(·; K). This is clearly a desirable property especially when one deals with point

samples of geometric objects.
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Theorem 3.1. (Hausdorff-Lipschitz continuity of the intersection transform) Let

E, F be non-empty compact subsets of Rn. Assume λ > 0. Then, there holds

|Iλ(x; E)− Iλ(x; F )| ≤ 12
√
λdistH(E, F ) , x ∈ R

n . (3.1)

We proceed next to analyze the behaviour of I(x; K) for different types of

points and directions. Our objective is to show that we can use I(x; K) to detect

the geometric singularities of a manifold. We will therefore introduce first the notion

of δ-regular directions and δ-regular points as follows:

Definition 3.2. Let K ⊂ R
n be non-empty and compact and let x ∈ K. Let e ∈ R

n

be a unit vector. Then

(i) We say that e is a δ-regular direction of x if B̄(x + δe; δ) ∩ K = B̄(x −
δe; δ) ∩K = {x}.

(ii) Suppose K is locally an m-dimensional C1 manifold with 1 ≤ m ≤ n− 1 in

a neighbourhood of x with tangent subspace Tx and normal subspace Nx.

If every unit vector e ∈ Nx is a δ regular direction of x, we say that x is a

δ-regular point of K.

Remark 3.3. If M ⊂ R
n is a compact C2 manifold without boundary, every point

of M is a δ-regular point for some fixed δ > 0. The point 0 of Example 1.2 where

K = {0} ⊂ R, is also a δ-regular point, for any δ > 0, according to Definition 3.2.

The definition of regular points as given above is justified by the following The-

orem which characterizes the value of Iλ(·; K) at such points.

Theorem 3.4. Suppose K ⊂ R
n is a non-empty compact set and e is a δ-regular

direction of x ∈ K, then Iλ(y; K) = 0 for y ∈ [x − δe, x + δe] := {x + tδe, −1 ≤
t ≤ 1} when λ ≥ 1/δ2. In particular, we have that at the point x

Cl
λ(C

u
λ (χK))(x) = 1/2 . (3.2)

If K is a C1 manifold in a neighbourhood of x ∈ K and x is a δ-regular point of

K, then Iλ(y; K) = 0 if y − x ∈ Nx and |y − x| ≤ δ.

Remark 3.5.

(a) From the proof of Theorem 3.4, it will follow that if x ∈ K is a δ-regular

point for some δ > 0, Cl
λ(C

u
λ (χK))(x) = 1/2 and x is the maximum point

in the interval [x− δe, x+ δ] for every regular direction e. This means that

we could also simply use the mixed transform Cl
λ(C

u
λ (χK))(x) to define

an intersection filter by taking the threshold above 1/2. By contrast, the

advantage of using Iλ(·; K) is that the regular points will be removed by

the transform itself, leaving only the singular ones.
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(b) Given the inequality (2.11), we could define also another intersection filter

as

Jλ(x; K) =
∣

∣

∣
Cu

4λ(χK)(x) − 2
(

Cu
λ (χK)(x) − Cl

λ(D
2
λ(·; K))(x)

)∣

∣

∣
. (3.3)

Although Jλ(·; K) would be a weaker intersection filter than Iλ(·; K),

we will nevertheless later use Jλ(·; K) to establish strong extractions of

transversal intersections. By applying Jλ(·; K), we will not be required to

compute mixed compensated convex transforms. This will makes, therefore,

our theoretical arguments much easier. From a practical point of view, how-

ever, since D2
λ(x; K) is defined by the distance function, the computation

of Jλ(·; K) will depend on the accuracy of the numerical computation of

D2
λ(x; K)). By contrast, if we use Iλ(x; K), the only information we need is

the characteristic function χK without using any external functions whose

numerical accuracy could be out of our control.

For compact C2 m-dimensional manifolds with 1 ≤ m ≤ n − 1, Theorem 3.4

implies that Iλ(y; K) = 0 for all δ−regular points y ∈ K when λ > 0 is sufficiently

large. This result motivates the following definition of singular points which can be

extracted by Iλ(·; K).

Definition 3.6. Let K be a closed non-empty subset of Rn. Assume λ > 0. A point

x ∈ K is called a strongly extractable singular point of K if there exists a constant

cx > 0, depending at most only on x, such that Iλ(x; K) ≥ cx > 0 for sufficiently

large λ > 0.

The definition is justified by looking at the value of Iλ(x; M) for some types of

geometric singular points of a manifold M . We will assume in the sequel, without

loss of generality, that the geometric singularity is located at the point 0 of Rn, and

therefore that we are interested to know what we can say on the value of Iλ(0; M)

with 0 ∈ M ⊂ R
n. We will first consider the case that M is a finite union of some

subspaces of Rn, that is, L =
⋃m

k=1 Lk ⊂ R
n with 1 ≤ dim(Lk) ≤ n− 1, under the

assumptions that there are no subspaces which are contained in other subspaces

and span[Li, i = 1, . . . ,m] = R
n. Subsequently, we will extend this result to general

C2 embedded manifolds in R
n with n ≥ 2. Before proceeding, we will need first the

following sufficient condition for Iλ(x; K) > 0.

Lemma 3.7. Let K ⊂ R
n be a closed non-empty set and x ∈ K. Assume λ > 0.

If Cl
λ(D

2
λ(·; K))(x) > 1/2 then Iλ(x; K) > 0.

Theorem 3.8. Suppose n ≥ 2 and let {e1, e2, . . . , em} ⊂ R
n be a finite collection

of unit vectors. We define the ray L+
i = {tei, t ≥ 0} for i = 1, 2, . . . ,m. Let

L =
⋃m

i=1 L
+
i ; clearly 0 ∈ L. Then

Cl
λ(D

2
λ(·; L))(0) > 1/2 (3.4)
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if and only if

span[e1, e2, . . . , em] = R
n. (3.5)

Furthermore, if (3.5) holds, then there exists a constant µL > 0 independent of

λ > 0 such that

Cl
λ(D

2
λ(·; L))(0) = 1/2 + µL . (3.6)

Consequently,

Iλ(0; L) ≥ 2µL > 0, (3.7)

and the point 0 is a strongly extractable singular point of L.

The content of Theorem 3.8 can be generalized to the case where in place of the

positive rays L+
i originating at the point 0, we have the range Γ+

i of smooth curves

originating at the same point 0.

Proposition 3.9. Let γi : [0, δ] 7→ R
n for i = 1, 2, . . . ,m be finitely many C2

compact curves in R
n parameterized by arc-length with m ≥ n and denote by Γi the

range of the regular curves γi, i.e. Γi = {γi(s) ∈ R
n, s ∈ [0, δ]} and by Γ =

⋃m
i=1 Γi.

Assume that 0 ∈
⋂m

i=1 Γi and that γi(0) = 0 for i = 1, 2, . . . ,m. Suppose that the

one-sided tangent vectors ei := γ′
i,+(0) = lims→0+(γi(s)−γi(0))/s for i = 1, 2, . . . ,m

are such that span[γ′
1,+(0), γ

′
2,+(0), . . . , γ

′
m,+(0)] = R

n. Then for λ > 0 sufficiently

large, we have

Cl
λ(D

2
λ(·; Γ))(0) ≥ 1/2 + µL/2 , (3.8)

where the constant µL > 0 is independent of λ > 0 and is such that

Cl
λ(D

2
λ(·; L))(0) = 1/2 + µL where L =

⋃n
i=1 L

+
i with L+

i the positive ray gen-

erated by the one-sided tangent vector ei := γ′
i,+(0), that is, L+

i = {tγ′
i,+(0), t ≥ 0}.

As a result, we have that

Iλ(0; Γ) ≥ µL (3.9)

for λ > 0 sufficiently large and the point 0 is a strongly extractable singular point

of Γ.

As a direct consequence of Theorem 3.8 and Proposition 3.9, we can determine

the behaviour of Iλ(0; M) for the case where M is the finite union of compact C2

m-dimensional manifolds with 1 ≤ m ≤ n− 1 and 0 ∈ ∩k
j=1Mj.

Theorem 3.10. Let M1,M2 . . . ,Mk ⊂ R
n be C2 compact manifolds with or

without boundary, and with 1 ≤ dim(Mj) ≤ n − 1. for j = 1, . . . , k. As-

sume 0 ∈ ∩k
j=1Mj and that there are C2 smooth curves parameterized by arc-

length γi : [0, δ] → M =
⋃k

j=1 Mj with γi(0) = 0 for i = 1, 2, . . . , n such

that the one-sided derivative γ′
1,+(0), . . . , γ

′
n,+(0) are linearly independent, hence
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span[γ′
1,+(0), γ

′
2,+(0), . . . , γ

′
n,+(0)] = R

n. Then for sufficiently large λ > 0, we have

that

Iλ

(

0; M =
k
⋃

j=1

Mj

)

≥ µL , (3.10)

hence, the point 0 is a strongly extractable singular point of M . The constant µL > 0

that enters (3.10) is independent of λ > 0 and is such that Cl
λ(D

2
λ(·; L)) = 1/2+µL,

where L =
⋃n

i=1 L
+
i with L+

i the positive ray generated by the one-sided tangent

vector ei := γ′
i,+(0), that is, L+

i = {tγ′
i,+(0), t ≥ 0}, for i = 1, . . . , n.

Corollary 3.11. Suppose M1, M2, . . .Mk ⊂ R
n be compact C2 manifolds with

1 ≤ dim(Mi) ≤ n− 1, i = 1, 2, . . . , k and assume that 0 ∈ ∩k
j=1Mj with 0 a relative

interior point of all Mj, j = 1, 2, . . . , k. Furthermore, we assume that M1, . . . ,Mk

intersect at 0 transversally, that is, span[T0M1, T0M2, . . . , T0Mk] = R
n. Then for

λ > 0 sufficiently large, Iλ(0;
⋃k

j=1 Mj) > 0.

Corollary 3.12. Suppose M1, M2 ⊂ R
n be compact C2 manifolds, with C2 bound-

aries ∂M1 and ∂M2, satisfying dim(M1) = dim(M2) = n − 1. Suppose that

0 ∈ ∂M1 ∩ ∂M2 and assume that span[T0M1, T0M2] = R
n. Then for λ > 0 suf-

ficiently large, Iλ(0; M1 ∪M2) > 0.

Remark 3.13.

(a) According to the previous findings, the filter Iλ(x; K) can therefore be suc-

cessfully applied to extract the transversal intersection points, for instance,

in the case of:

(i) Two C2 surfaces M1, M2 intersecting each other at a point transver-

sally;

(ii) A surface and a curve intersecting each other transversally;

(iii) Three curves intersecting each other at a point transversally.

(b) For a piecewise affine surface K, such as in the case where K is the boundary

of a polytope in R
3, by using the filter Iλ(x; K) we can also extract all the

one-dimensional edges. Suppose indeed, P1 and P2 are two faces intersecting

over an edge L and assume that p ∈ L; we can then find two linearly

independent vectors e
(i)
1 , e

(i)
2 such that p+ se

(i)
1 , p+ se

(i)
2 ∈ Pi for i = 1, 2

and span[e
(1)
1 , e

(1)
2 , e

(2)
1 , e

(2)
2 ] = R

3. The result follows from Theorem 3.8

and the locality property Theorem 2.6. Furthermore, we have that

lim inf
λ→+∞

Iλ(x; K) > 0 (3.11)

if and only if x ∈ K is an edge point.

(c) We do not known whether our operator Iλ(·; K) can detect tangential in-

tersections, at least in a weak sense. One such example in R
2 is the union

of the two unit circles B((0, 1); 1) and B((0,−1); 1), centred at (0, 1) and



September 20, 2014 10:40 WSPC/INSTRUCTION FILE ZOC-Paper2-
m3as

14 Zhang, Orlando, Crooks

(0,−1), respectively. It is then easy to check that the direction e = (0, 1) is

a regular direction of the intersecting point (0, 0), hence

Iλ

(

(0, 0); B((0, 1); 1)
⋃

B((0,−1); 1)
)

= 0 .

It would, however, be interesting to establish, for this case, whether

near the point (0, 0), say at (0, t) for t > 0 small, the transform

Iλ ((0, t); B((0, 1); 1)
⋃

B((0,−1); 1)) > 0. Numerical experiments appear

to suggest that this is the case.

(d) Another obvious type of degeneracy is when the manifolds intersect in a

non-transversal way. For example, consider two lines l1 = {(x, 0, 0), x ∈ R}
and l2 = {(0, y, 0), y ∈ R} in R

3 that intersect at the origin. As e3 = (0, 0, 1)

is a regular direction of the origin, Iλ((0, 0, 0); l1 ∪ l2) = 0.

Denote by K = ∪m
i=1Mi ⊂ R

n the union of compact smooth manifolds and by

µ a constant with 0 < µ < 1 to be taken as ‘strength’ of the intersection in a

meaning to be made clear next. By Theorem 3.10, we may assume that there is

some Λ > 0 such that, when λ ≥ Λ, the set Vα of the intersection points such that

Iλ(x; K) = µx ≥ µ for x ∈ Vα, is not empty. By Theorem 3.4, we also know that

for λ-regular points y, Iλ(y; K) = 0. Fixing λ ≥ Λ and take Ks ⊂ R
n a compact

set (sample set with noise) such that

distH(K, Ks) ≤
µ

48
√
λ
, (3.12)

then by Theorem 3.1, we have that Iλ(x; Ks) ≥ 3µ/4 and Iλ(y; Ks) ≤ µ/4. This

result shows that as long as a sample set Ks is close to K we can extract ‘strong

intersection points’ with the given strength µ > 0, and suppress sample noise.

We conclude this section with some observations on the singular set of a manifold

by considering the general case that K = ∪m
i=1Mi ⊂ R

n is the union of smooth

compact manifolds. If we denote by Gλ(K) := {x ∈ Rn, Iλ(x; K) > 0} the support

of Iλ(·; K), we may then define the essential singular set of K by

G∞(K) =
⋂

t>0

⋃

λ≥t

Gλ(K) . (3.13)

The following observations summarise what we know and what we do not know

about the essential singular set G∞(K).

(i) From the property of the upper transform, we infer that Gλ(K) is contained

in the closed 1/
√
λ neighbourhood K1/

√
λ of K. Thus G∞(K) ⊂ K.

(ii) If x ∈ K is not an intersection point, then by Theorem 3.4, we have, for

λ > 0 sufficiently large, Iλ(x; K) = 0. Thus x /∈ G∞(K).

(iii) If x ∈ K is a transversal intersection point, then Theorem 3.10 implies

that for λ > 0 sufficiently large, Iλ(x; K) ≥ µx > 0 for a constant µx

independent of λ. Therefore x ∈ G∞(K).
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(iv) If x ∈ K is a tangential intersection of two (n−1)-dimensional smooth man-

ifolds, we do not know whether x ∈ G∞(K). Our numerical experiment of

two tangentially intersecting spheres displayed in Figure 8(a) below sug-

gests however that this might be the case.

(v) If x ∈ K is a non-transveral intersection point, we do not know whether

x ∈ G∞(K).

4. Examples

In order to verify the previous results and to gain insight into the filter Iλ(·,K),

in this section we will examine the behaviour of Iλ(·; K) for: (i) two prototype

examples, for which we can obtain an analytical exptression for Iλ(·; K); and (ii)

some general geometries of intersections based on a numerical evaluation of Iλ(·; K).

4.1. Prototype models

The two examples illustrated in this section can be considered as prototypes for

intersections and sharp turning points (or edges of piecewise smooth manifolds).

The first one regards the intersection between two lines, whereas the second one

refers to the intersection of two rays originating at the same point.

Intersection of two lines

For a fixed α > 0, we consider the following set Kα = {(x, y) ∈ R
2, |y| = α|x|}.

Then for λ > 0, we have for (x, y) ∈ R
2

Cu
λ (χKα

)(x, y) =






















































































































1− λ(α2x2 − y2), |x| ≤ 1

α
√

(1 + α2)λ,
|y| ≤ α|x|,

1 + λ(x2 + y2)− 2
√

(1 + α2)λ
|x|
α

+
1

α2
, |x| ≥ 1

α
√

(1 + α2)λ
,

|x|+ α|y|√
1 + α2

≤ 1

α
√
λ
,

λ

( |y| − α|x|√
1 + α2

+
1√
λ

)2

,
(α|y|+ |x|√

1 + α2
≥ 1

α
√
λ
, − 1√

λ
≤ |y| − α|x|
√

1 + α2
≤ 0,

0, |x| ≥
√
1 + α2

α
√
λ

,
|y| − α|x|
√

1 + α2
≤ − 1√

λ
,

1− λ(
y2

α2
− x2), |y| ≤ α2

√

(1 + α2)λ
, |x| ≤ |y|

α
,

1 + λ(x2 + y2)− 2
√

λ(1 + α2)|y|+ α2, |y| ≥ α2

√

(1 + α2)λ
,

|x|+ α|y|√
1 + α2

≤ α√
λ
,

λ

(

α|x| − |y|√
1 + α2

+
1√
λ

)2

, − 1√
λ
≤ α|x| − |y|√

1 + α2
≤ 0,

α√
λ
≤ |x|+ α|y|√

1 + α2
,

0, |y| ≥
√
1 + α2

√
λ

,
α|x| − |y|√

1 + α2
≤ − 1√

λ
.

(4.1)
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Without loss of generality, we may assume that α ≥ 1. The minimum value

of Cu
λ (χKα

)(x, y) + λ(x2 + y2) is 1/2 + 1/(2α2) which is attained at x± =

±
√
1 + α2/(2α

√
λ), y± = 0. Therefore

Cl
λ(C

u
λ (χKα

))(0, 0) =
1

2
+

1

2α2
(4.2)

so that

Iλ((0, 0); Kα) =
1

α2
. (4.3)

We see from this example that the largest value for Iλ((0, 0); Kα) occurs when

α = 1, that is, when the two lines are perpendicular to each other. Figure 1 displays

the graphs of Cu
λ(χKα=1

)(x), Cl
λ(C

u
λ (χKα=1

))(x) and of the filter Iλ(·; Kα=1) for

this case.

(a) (b) (c)

Fig. 1. Graph of: (a) The upper transform Cu

λ
(χKα=1

)(x) of the characteristic function of two
crossing lines with right angle; (b) The mixed transform Cl

λ
(Cu

λ
(χKα=1

))(x); (c) The intersection
filter Iλ(·; Kα=1) together with the graph of the characteristic function of Kα=1 displayed as
reference.

Remark 4.1. Since Cl
λ(C

u
λ (χK)) ≥ Cl

λ(D
2
λ(·; K)) and we have used Cl

λ(D
2
λ(·; K))

to formulate sufficient conditions for the extractability of the intersection points,

it is interesting to compare the ‘strength’ between the two filters: Iλ(·; Kα) and

Jλ(·; Kα) defined by (3.3). Let us again consider the set Kα = {(x, y) ∈ R
2, |y| =

α|x|} and α ≥ 1. We have then

dist((x, y); Kα) =
|α|x| − |y||√

1 + α2
. (4.4)

It is easy to show that in this case

min
{

D2
λ((x, y); Kα) + λ(x2 + y2), (x, y) ∈ R

2
}

=
1

2
+

1

2(1 + 2α2)
(4.5)

which is attained at

(x±, y±) =

(

α
√
1 + α2

(1 + 2α2)
√
λ
, 0

)

. (4.6)



September 20, 2014 10:40 WSPC/INSTRUCTION FILE ZOC-Paper2-
m3as

Compensated Convexity and Stable Extraction of Intersections 17

Therefore, for α ≥ 1

Jλ((0, 0); Kα) =
1

1 + 2α2
. (4.7)

From the developments of the Example of the two intersecting lines, we find also

that

Iλ((0, 0); Kα) =
1

α2
, (4.8)

hence, Iλ((0, 0); Kα) > Jλ((0, 0); Kα). In particular, for α = 1, Jλ((0, 0); K1) = 1/3

while Iλ((0, 0); K1) = 1. This shows that Iλ(·; K) is a much stronger filter than

Jλ(·; K).

(a) (b) (c)

Fig. 2. (a) Marker Iλ(·; P1∪P2) of two intersecting planes P1 and P2 at right angles with threshold
0.75, λ = 25 and the characteristic function of the set as reference; (b) Marker Iλ(·; P ∪L) of plane
P intersecting line L at right angles with threshold 0.75 and λ = 25. (c) Marker of the singularity
of a cone with λ = 25;

Remark 4.2. The example of two intersecting lines can be used to construct pro-

totypes in R
3, such as the intersection of two planes, by applying Proposition 2.11,

and the cone, by applying Proposition 2.10. The graph of the filter Iλ(·; K) for

these two cases is displayed in Figure 2.
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Intersection of two rays

For a fixed α > 0, let us consider now the set K+
α = {(x, y) ∈ R

2, x ≥ 0, |y| ≤ αx}.
For λ > 0, we have for (x, y) ∈ R

2

Cu
λ (χK+

α
)(x, y) =























































































































1− (λα2x2 − λy2), |y| ≤ αx, 0 ≤ x ≤ 1

α
√

(1 + α2)λ
,

0,
|y| − αx√
1 + α2

≤ − 1√
λ
, x ≥

√
1 + α2

α
√
λ

,

λ

(

1√
λ
+ |y| − αx

√

1 + α2

)2

, − 1√
λ
≤ |y| − αx√

1 + α2
≤ 0,

1

α
√
λ
≤ α|y|+ x√

1 + α2
,

−
(

2x
√

(1 + α2)λ

α
− 1

α2

)

+ λ(x2 + y2) + 1, x ≥ 1

α
√

(1 + α2)λ
,
α|y|+ x√
1 + α2

≤ 1

α
√
λ
,

λ

(

− 1√
λ
+

|y| − αx√
1 + α2

)2

, 0 ≤ |y| − αx√
1 + α2

≤ 1√
λ
,
α|y|+ x√
1 + α2

≥ 0,

λ

(

√

x2 + y2 − 1√
λ

)2

,
√

x2 + y2 ≤ 1√
λ
,
(α|y|+ x)√

1 + α2
≤ 0,

0,
(α|y|+ x)√

1 + α2
≥ 0,

|y| − αx√
1 + α2

≥ 1√
λ
,

0,
√

x2 + y2 ≥ 1√
λ
,

(α|y|+ x)√
1 + α2

≤ 0 .

(4.9)

The formula for the mixed transform Cl
λ(C

u
λ (χK+

α
))(x, y) is very complicated and

is omitted here. There is a critical angle αc =
√

(
√
5− 1)/2 which is the positive

solution of α4 +α2 = 1. We have the explicit formulae for the case α ≥ αc, whereas

for α ≤ αc we have not yet derived the complete expressions of Cl
λ(C

u
λ (χK+

α
))(x, y).

However, at the intersection (sharp turning point) (0, 0), we have,

Cl
λ(C

u
λ (χK+

α
))(0, 0) =











1 + α2

2 + α2
, α ≤ αc,

1 + α2

α2
− 2(1 + α2)(

√
1 + α2 − α)2

α2
, α ≥ αc.

(4.10)

In both cases we have Cl
λ(C

u
λ (χK+

α
))(0, 0) > 1/2. We also see that when α → 0+

or α → +∞, Cl
λ(C

u
λ (χK+

α
))(0, 0) → 1/2 hence Iλ((0, 0); K

+
α ) → 0 for every fixed

λ > 0. The behaviour of Iλ(·; K+
α ) can be appreciated by inspecting Figure 3 and

Figure 4. Figure 3(a) displays the scaled graph of Iλ((0, 0); K
+
α ) for 0 ≤ α ≤ 3

with its maximum value equal approximately to 0.260396 attained at α = 0.9227,

whereas Figure 3(b) shows the graph of Iλ((x, 0); K
+
α ) for α = 1 and λ = 25.

Figure 4 displays the graphs, for the case α = 1 > αc and λ = 25, of Cu
λ (χK+

α
),

Cl
λ(C

u
λ (χK+

α
)), Iλ(·; K+

α ) and of the scaled Iλ(·; K+
α ). We also observe that the

maximum of Iλ(·; K+
α ) is not attained at the point (0, 0).

Remark 4.3.
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(a) (b)

Fig. 3. (a) The graph of α 7→ Iλ((0, 0); K
+
α ); (b): The graph of x 7→ Iλ((x, 0); K

+
α ) for α = 1 and

λ = 25.

(a) (b) (c) (d)

Fig. 4. (a) The upper transform Cu

λ
(χ

K
+
α
) of the characteristic function of two crossing rays with

right angle (α = 1) and λ = 25; (b) The mixed transform Cl

λ
(Cu

λ
(χ

K
+
α
)); (c) The intersection

marker given by Iλ(·; K
+
α ) and the characteristic function; (d) Scaled intersection marker with the

characteristic function χ
K

+
α

as reference.

(a) From the graph of the mapping α 7→ Iλ((0, 0); K
+
α ), we see that if α > 0 is

small or large, Iλ((0, 0); K
+
α ) will be small, hence with this meaning, we can

say that the filter Iλ(·; K+
α ) captures somehow the strength of the different

intersections and sharp turning points.

(b) Figure 4 shows that the intersection marker Iλ(·; K+
α ) lies on the interior

corner formed by the two lines. The numerical experiments described in

Section 4.2 agree with this prototype for turning points.

Remark 4.4. Even this example can be used to construct prototype for intersec-

tions in R
3, such as the intersection of two semiplanes by applying Proposition 2.11,

and the vertex of a convex cone, by applying Proposition 2.10. Suplevel set of the

scaled filter Iλ(x; K) (i.e. after normalizing it to one) are displayed in Figure 5 alon
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(a) (b)

Fig. 5. (a) Marker of singularities for a surface formed by two planes with right angle and λ = 25;
(b) Marker of singularity of a convex cone with λ = 25 and with the characteristic function as
reference.

with the suplevel set of the characteristic function of the object.

4.2. Numerical Experiments

For more complicated geometries, the filter Iλ(·; K) must be evaluated numerically.

The numerical realization of Iλ(·; K) relies on the availability of numerical schemes

for computing the upper and lower transform of a given function, which then means

the availability of schemes to compute the convex envelope of a function. We refer

to Ref. 28 for the algorithmic and implementation details of the scheme we have

adopted, by just noting here that, because of the locality property of the compen-

sated convex transforms (see for instance Theorem 2.6 where quantitative estimates

of the neighborhood size are also given), it is possible to develop fast schemes that

depend only on the local behaviour of the input function. This is in sharp contrast

to the evaluation of the convex envelope of a function which is a global evaluation.

In this section, we will illustrate some numerical experiments which are only

meant to show the effectiveness of the filter Iλ(·; K) and its Hausdorff stability

property. We will consider both 2d− and 3d−geometries. The geometry is digitized

and input as an image, but also other computer representations of the geometry can

clearly be handled. This depends finally on the representation of the input geometry

for the numerical scheme that is used to compute the compensated transforms.

Figure 6 is an instance of a set of 2d curves which intersect to each other in different

manner. The Figure shows the position of the local maxima of Iλ(·; K) which are

seen to coincide with all the crossing and turning points of the given curves.

Figure 7 displays the results of the application of the filter Iλ(·; K) to 3d geome-

tries represented by point clouds. Figure 7(a) displays a 3d frame with different type

of connections, whereas Figure 7(b) depicts the intersections between manifolds of

different dimensions, namely, in the Figure a sphere, a plane and a line, intersecting

each other, are considered. Figure 7(c) shows the Whitney umbrella of the implicit
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(a) (b)

Fig. 6. (a) Sharp turning point of curves; (b) Intersection points of medial axis curves.

equation x2 = y2z, with the location of where the surface intersects itself.

(a) (b) (c)

Fig. 7. (a) Intersections of sampled line segments in 3d with different ways of connections; (b)
Intersections of sampled sphere, planes and lines; (c) Self intersections of the sampled Whitney
umbrella given by the equation x2 = y2z.

The numerical experiments displayed in Figure 8 and Figure 9 refer to critical

conditions that are not directly covered by the theoretical results we have obtained.

Figure 8 shows the result of the application of Iλ(·; K) to two spheres that are

‘almost’ tangentially intersecting each other, whereas Figure 9 illustrates the results

of the application of the filter to detect the intersection between loosely sampled

piecewise affine functions, a plane and a line. Different suplevel sets of Iλ(·; K),

reflecting the different strength of the type of intersection are shown in Figure 9.

For instance, the intersection of the line with the plane for the geometry shown in
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Figure 9 is weaker than the geometric singularities of the piecewise affine surface.

With this meaning, the values of the local maxima of Iλ(·; K) determine a scale

between the different type of intersections present in the manifold K and represents

the multiscale nature of the filter Iλ(·; K).

Fig. 8. Two sampled spheres, with equation {(i, j, k) :
∣

∣(i−50)2+(j−50)2+(k−120)2−302
∣

∣ <= 1}
and {(i, j, k) :

∣

∣(i − 50)2 + (j − 50)2 + (k − 50)2 − 402
∣

∣ ≤ 1}, which are ‘almost’ tangentially
intersected, and indication of the intersection marker.

(a) (b)

Fig. 9. Intersection markers for the intersection among loosely sampled piecewise affine surfaces
of equation ||10x − 75| − |10y − 75| + |10z − 75| − 45|=0, the plane of equation y = 22 and
the line of equation x = 22, z = 22. The figure displays different suplevel sets of Iλ(x; K): (a)
Iλ(x; K) ≥ 0.40maxx∈K(Iλ(x; K)); (b) Iλ(x; K) ≥ 0.65maxx∈K(Iλ(x; K)).

5. Proofs of the Main Results

Proof of Proposition 2.11. Part (i) Since χKn
m
(x, z) = χKm

(x) for all x ∈ R
m,

z ∈ R
n, the application of Proposition 2.9 yields

coRn+m [λ|x|2 + λ|z|2 − χKn
m
](x, z) = λ|z|2 + coRm [λ|x|2 − χKm

](x) (5.1)
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which proves (2.12)1. The proof of (2.12)2, is also easy to verify using the definition

of D2
λ(·; K).

Part (ii): The proof of (2.12)2 follows from the definition of D2
λ(·; K). As for the

proof of (2.12)1, by the definition of upper transform, we have

co[λ|x|2 − χKm
](x) = λ|x|2 − Cu

λ (χKm
)(x), x ∈ R

m . (5.2)

We need to show that this is also the convex envelope of the function λ(|x|2+ |z|2)−
χK0,n

m
(x, z) at z = 0. By definition,

λ|x|2 − Cu
λ(χKm

)(x) = co[λ|x|2 − χKm
](x) ≤ λ|x|2 − χKm

(x)

≤ λ(|x|2 + |z|2)− χK0,n
m

(x, z) .
(5.3)

Thus for z = 0,

co[λ|x|2 − χKm
](x) ≤ co[λ(|x|2 + |z|2)− χK0,n

m
](x, z = 0) . (5.4)

On the other hand, by restricting to the plane z = 0, we obtain

co[λ(|x|2+|z|2)−χK0,n
m

](x, z = 0) ≤ λ(|x|2+|z|2)−χK0,n
m

|(x, z = 0) = λ|x|2−χKm
(x) .

(5.5)

As restrictions of convex functions in a subspace remain convex, by definition of the

convex envelope, we find

co[λ(|x|2 + |z|2)− χK0,n
m

](x, z = 0) ≤ co[λ|x|2 − χKm
](x) , (5.6)

which proves (2.13)1.

Proof of Lemma 2.13 It was proved in Lemma 5.4 of Ref. 27 that

|D2
λ(x; E))−D2

λ(x; F ))| ≤ 2
√
λdistH(E,F ),

and thus

D2
λ(x; F )− distH(E,F ) ≤ D2

λ(x; E) ≤ D2
λ(x; F ) + distH(E,F ). (5.7)

Taking the lower transform in (5.7) and using the ordering property of lower trans-

forms, we obtain

Cl
λ(D

2
λ(·; F )−distH(E,F ))(x) ≤ Cl

λ(D
2
λ(·; E))(x) ≤ Cl

λ(D
2
λ(·; F )+distH(E,F ))(x) .

Then by the affine covariant property co[f+ℓ] = co[f ]+ℓ, where ℓ an affine function,

of the convex envelope, we have that

Cl
λ(D

2
λ(·; F ))(x)−distH(E,F ) ≤ Cl

λ(D
2
λ(·; E))(x) ≤ Cl

λ(D
2
λ(·; F ))(x)+distH(E,F ),

from which the result follows.

Proof of Theorem 3.1. The statement follows from the expression of Iλ(·; K) in

terms of the stable ridge transform (1.6) and from the Hausdorff stability of the
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upper transform and of the stable ridge transform, Theorem 2.12, after applying

the triangle inequality.

Proof of Theorem 3.4. We first establish the result in R
2 and then apply Propo-

sition 2.10 to generalise the result to higher dimensional cases. Without loss of

generality, we may assume that x = (0, 0) and e = (0, 1) ∈ R
2. By our as-

sumption that e is a δ-regular direction, we have B̄((0, δ); δ) ∩ K = {(0, 0)} and

B̄((0,−δ); δ) ∩K = {(0, 0)}. Now we define K+ = B((0,−δ); δ) ∪Bc((0, δ); δ) and

K− = {(0, 0)}, then χK−
(x, y) ≤ χK(x, y) ≤ χK+

(x, y) so that

Cu
λ (χK−

)(x, y) ≤ Cu
λ(χK)(x, y) ≤ Cu

λ (χK+
)(x, y) (5.8)

and

Cl
λ(C

u
λ (χK−

))(x, y) ≤ Cl
λ(C

u
λ (χK)) ≤ Cl

λ(C
u
λ (χK+

))(x, y) . (5.9)

We will show that for t ∈ [−δ, δ] and for λ > 1/δ2,

Cl
λ(C

u
λ (χK−

))(0, t) = Cl
λ(C

u
λ (χK+

))(0, t) . (5.10)

First we have

Cu
λ(χK−

)(x, y) =







λ(1/
√
λ−

√

x2 + y2)2,
√

x2 + y2 ≤ 1/
√
λ,

0,
√

x2 + y2 ≥ 1/
√
λ.

(5.11)

The formula for Cu
4λ(χK−

)(x, y) is similar and is obtained by just replacing λ by 4λ

in (5.11). We also have,

Cl
λ(C

u
λ (χK−

))(x, y)











1

2
− λ(x2 + y2),

√

x2 + y2 ≤ 1

2
√
λ
,

Cu
λ (χK−

)(x, y),
√

x2 + y2 ≥ 1

2
√
λ
.

(5.12)

For K+ and for λ ≥ 1/δ2, we have, by the regular extension theorem (see Theorem

3.4 of Ref. 27), that

Cu
λ (χK+

)(x, y) =



















1, (x, y) ∈ K+,

λ(δ − 1/
√
λ−

√

x2 + (|y| − δ)2)2, δ − 1/
√
λ ≤

√

x2 + (|y| − δ)2 ≤ δ,

0,
√

x2 + (|y| − δ)2 ≤ δ − 1/
√
λ.

(5.13)

Thus for |y| ≤ δ, we have

Cu
λ (χK−

)(0, y) = Cu
λ(χK)(0, y) = Cu

λ (χK+
)(0, y) (5.14)

and

Cu
4λ(χK−

)(0, y) = Cu
4λ(χK)(0, y) = Cu

4λ(χK+
)(0, y) . (5.15)
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Now we calculate Cl
λ(C

u
λ (χK+

))(0, y) for y ∈ [−δ, δ]. First we consider the func-

tion of a single variable

g(y) := Cu
λ (χK+

)(0, y) =































λ(1/
√
λ− |y|)2, |y| ≤ 1/

√
λ,

0, 1/
√
λ ≤ |y| ≤ 2δ − 1/

√
λ,

λ(2δ − 1/
√
λ− |y|)2, 2δ − 1/

√
λ ≤ |y| ≤ 2δ,

1, |y| ≥ 2δ.
(5.16)

Now we consider the function

fλ(y) =



























1

2
, |y| ≤ 1

2
√
λ
,

λ(1/
√
λ− |y|)2 + λy2,

1

2
√
λ
≤ |y| ≤ 1√

λ
,

λy2, |y| ≥ 1√
λ
.

(5.17)

It is easy to verify that fλ(y) is convex and fλ(y) = co[g + λ|y|2](y) for y ∈ [−δ, δ].

Now we show that fλ(y) ≤ Cu
λ (χK+

)(x, y) + λ(x2 + y2) for (x, y) ∈ R
2. To this

purpose, we consider first the case when
√

x2 + (|y| − δ)2 ≥ δ; i.e. x ∈ K+. Then

we have

Cu
λ(χK+

)(x, y) + λ(x2 + y2) = 1 + λ(x2 + y2) ≥ 1 + λy2. (5.18)

Now, for |y| ≤ 1/(2
√
λ), we have that

1 + λy2 ≥ 1/2 = fλ(y) ,

for 1/(2
√
λ) ≤ |y| ≤ 1/

√
λ, we get that

fλ(y) ≤ fλ(1/
√
λ) = 1 ≤ 1 + λy2 ,

whereas for |y| ≥ 1/
√
λ, we find

fλ(y) = λy2 ≤ 1 + λy2 .

By comparing these results, we conclude therefore that when
√

x2 + (|y| − δ)2 ≥ δ,

fλ(y) ≤ Cu
λ(χK+

)(x, y) + λ(x2 + y2) . (5.19)

On the other hand, when
√

x2 + (|y| − δ)2 ≤ δ − 1/
√
λ, we can easily verify that

1/
√
λ ≤ |y| ≤ 2δ − 1/

√
λ

so that

fλ(y) = λy2 ≤ λ(x2 + y2) = Cu
λ (χK+

)(x, y) + λ(x2 + y2). (5.20)

What remains is to see what happens when δ − 1/
√
λ <

√

x2 + (|y| − δ)2 < δ. To

this purpose, we define Uλ = {(x, y) ∈ R
2, δ − 1/

√
λ <

√

x2 + (|y| − δ)2 < δ}. If

(x, y) ∈ Uλ and x 6= 0, it is easy to see that

sign

(

∂

∂x

(

Cu
λ (χK+

)(x, y) + λ(x2 + y2)
)

)

= sign(x) (5.21)
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where sign(·) is the signature function. Thus Cu
λ(χK+

)(x, y)+λ(x2+y2) is increasing

for x > 0 and decreasing for x < 0 in the region Uλ. Thus if |y| ≤ 1/
√
λ or

2δ − 1/
√
λ ≤ |y| ≤ 2δ and (x, y) ∈ Uλ,

Cu
λ (χK+

)(x, y) + λ(x2 + y2) ≥ g(y) + λy2 ≥ fλ(y). (5.22)

If 1/
√
λ ≤ |y| ≤ 2δ − 1/

√
λ and (x, y) ∈ Uλ, then

Cu
λ (χK+

)(x, y) + λ(x2 + y2) ≥ λy2 = fλ(y) . (5.23)

In summary, for all (x, y) ∈ R
2, the convex function fλ(y) satisfies

fλ(y) ≤ Cu
λ (χK+

)(x, y) + λ(x2 + y2)

and fλ(y) = Cu
λ (χK+

)(0, y) + λy2
(5.24)

for 1/(2
√
λ) ≤ |y| ≤ δ, whereas fλ(y) = 1/2 when |y| ≤ 1/(2

√
λ), and

f(±1/(2
√
λ)) = Cu

λ (χK+
)(0,±1/(2

√
λ) + λ(1/(2

√
λ))2 = 1/2 . (5.25)

Therefore

fλ(y) = co[Cu
λ (χK+

) + λ(x2 + y2)](x = 0, y) (5.26)

for |y| ≤ δ. Thus

fλ(y)− λy2 = Cl
λ(C

u
λ (χK+

))(x = 0, y) . (5.27)

However, by a direct comparison we also see that

fλ(y)− λy2 = Cl
λ(C

u
λ (χK−

))(x = 0, y) . (5.28)

Consequently

Cl
λ(C

u
λ (χK))(0, y) = fλ(y)− λy2 =



























1

2
− λy2, |y| ≤ 1

2
√
λ
,

λ(1/
√
λ− |y|)2, 1

2
√
λ
≤ |y| ≤ 1√

λ
,

0,
1√
λ
≤ δ.

(5.29)

Combining this and our calculations of Cu
λ(χK))(0, y) and Cu

4λ(χK)(0, y), we obtain

Iλ((0, y); K−) = Iλ((0, y); K) = Iλ((0, y); K+) = 0 (5.30)

for |y| ≤ δ.

The general case follows from Proposition 2.10 for the convex envelope as we

may assume that x = 0 ∈ R
n and e = (0, . . . , 0, 1) and notice that in the two-

dimensional case, both χK−
(x, y) and χK+

(x, y) are even functions of y.
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Proof of Lemma 3.7. From the expression of Iλ(x; K), we have that for x ∈ K

Iλ(x; K) = Cu
4λ(χK)(x) − 2

(

Cu
λ(χK)(x)− Cl

λ(C
u
λ (χK))(x)

)

= 2Cl
λ(C

u
λ (χK))(x) + Cu

4λ(χK)(x) − 2Cu
λ(χK)(x)

= 2Cl
λ(C

u
λ (χK))(x) − 1 ≥ 2Cl

λ(D
2
λ(·; K))(x) − 1

where we have taken into account (2.11) and that Theorem 2.8 gives, for x ∈ K,

Cu
4λ(χK(x))− 2Cu

λ (χK(x)) = −1 .

The result then follows by invoking the assumption that Cl
λ(D

2
λ(·; K))(x) > 1/2.

Proof of Theorem 3.8. If span[e1, e2, . . . , em] := E 6= R
n, then E is a proper

subspace of Rn. Let e0 ⊥ E be a unit vector perpendicular to E, then e0 is a regular

direction of 0 ∈ L for any δ > 0. Therefore by Theorem 3.4, Cl
λ(C

u
λ (χL))(0) = 1/2.

We also have 1/2 = Cl
λ(C

u
λ (χL))(0) ≥ Cl

λ(D
2
λ(·; L))(0). In fact we can show that

Cl
λ(D

2
λ(·; L)(0) = 1/2 from the proof below for the other case.

Conversely, suppose span[e1, e2, . . . , em] = R
n. We have, for each i = 1, 2, . . . ,m

that

dist(x; L+
i ) =

{ |Pe⊥
i
x|, if x · ei ≥ 0,

|x|, if x · ei ≥ 0.
(5.31)

Thus if we set y =
√
λx, then

(1−
√
λdist(x; L+

i ))
2 + λ|x|2 = (1− dist(y; L+

i ))
2 + |y|2, (5.32)

hence

D2
λ(x; L) + λ|x|2 = D2

1(y; L) + |y|2. (5.33)

It follows that Cl
λ(D

2
λ(·; L))(0) = Cl

1(D
2
1(·; , L))(0) which is independent of λ > 0.

Indeed, by definition, there are λ1 > 0, . . . , λk > 0 (1 ≤ k ≤ n+1) with
∑k

i=1 λk = 1

and x1, . . . , xk ∈ R
n such that

Cl
λ(D

2
λ(·; L))(0) = co[D2

λ(·; L) + λ|x|2](x = 0) =

k
∑

i=1

λi

(

D2
λ(xi; L) + λ|xi|2

)

=

k
∑

i=1

λi

(

D2
1(yi; L) + |yi|2

)

≥ Cl
1(D

2
1(·; L))(0),

(5.34)

where yi =
√
λxi. On the other hand, by using a similar argument we see that

Cl
1(D

2
1(·; L))(0) ≥ Cl

λ(D
2
λ(·; L))(0) . (5.35)

Now since m ≥ n, we may assume, without loss of generality, that the first n vectors

e1, e2, . . . , en are linearly independent, hence form a basis of Rn. Let Ln = ∪n
i=1L

+
i .
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Then we have D2
λ(x; L) ≥ D2

λ(x; L
n) for all x ∈ R

n so that Cl
λ(D

2
λ(·; L))(x) ≥

Cl
λ(D

2
λ(·; Ln))(x) for all x ∈ R

n. Now we only need to prove that

Cl
1(D

2
1(·; Ln))(0) = 1/2 + µLn (5.36)

with µLn > 0. We have

D2
1(y; L

n) + |y|2 =















(1− |Pe⊥
i
y|)2 + |y|2, if y ∈ Ji, i = 1, 2, . . . , n,

(1− |y|)2 + |y|2, if y ∈ J0;

|y|2, if y ∈ J+,

(5.37)

where

Ji = {y ∈ R
n, y · ei ≥ 0, |Pe⊥

i
y| ≤ dist(y, Lj), |Pe⊥

i
y| ≤ 1, j = 1, 2, . . . , j 6= i},

J0 = {y ∈ R
n, y · ej ≤ 0, j = 1, 2, . . . , n, |y| ≤ 1},

J+ = {y ∈ R
n, dist(y, Ln) ≥ 1} .

(5.38)

Clearly, 0 is an exposed point of the convex cone of Ln. Thus the set K0 := {y ∈
R

n, |y| = 1/2, y · ei ≤ 0, i = 1, 2, . . . , n} = J0 ∩ {y ∈ R
n, |y| = 1

2} is not empty. We

claim that

min{D2
1(y; L) + |y|2, y ∈ R

n} = 1/2 (5.39)

and the set of minimum points is exactly K0.

By definition, in the region Ji,

D2
1(y; L)+|y|2 = (1−|Pe⊥

i
y|)2+|y|2 = 2(|Pe⊥

i
y|−1/2)2+|Peiy|2+1/2 ≥ 1/2, (5.40)

and the equality holds if and only if |Pe⊥i
y| = 1/2 and Peiy = 0, which is equivalent

to y ⊥ ei and |Pe⊥
i
y| = |y| = 1/2. Since y ∈ Ji, by definition, |y| = |Pe⊥

i
y| ≤

dist(y; Lj) for all j = 1, 2, . . . , n, j 6= i. Thus y · ej ≤ 0 for all j = 1, 2, . . . , n, j 6= i.

Therefore y ∈ J0 and |y| = 1/2 hence y ∈ K0.

If y ∈ J0, clearly D2
1(y; L) + |y|2 = 2(|y| − 1/2)2 + 1/2 ≥ 1/2 and the minimum

is reached exactly when y ∈ K0.

If y ∈ J+, as 0 ∈ Ln, D2
1(y; L) + |y|2 = |y|2 ≥ dist2(y;Ln) ≥ 1. Thus both of

our claims above are proved.

Clearly, 0 /∈ K0. Next we show that 0 /∈ co[K0] with co[K0] the convex hull of

K0. If 0 ∈ co[K0], there are y1, . . . , yk ∈ K0, λ1 > 0, . . . , λk > 0 with 1 < k ≤ n+ 1

such that
∑k

i=1 λi = 1 and
∑k

i=1 λiyi = 0. Now we have, for each j = 1, 2, . . . n,
∑k

i=1 λi(yi · ej) = 0. As yi ∈ K0 for i = 1, 2, . . . , k, by definition, yi · ej ≤ 0. Since

λi > 0 for all i = 1, 2, . . . , k, we see that yi · ej = 0 for all i = 1, 2, . . . , k and

j = 1, 2, . . . n. As e1, e2, . . . , en is a basis of R
n, we conclude that yi = 0 for all

i = 1, 2, . . . , k, which contradicts the definition of K0.

Now we show that Cl
1(D

2
1(·; Ln))(0) > 1/2. This is easy to see by definition of

the lower transform. Suppose Cl
1(D

2
1(·;Ln))(0) = 1/2, there are y1, . . . , yk ∈ R

n,
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λ1 > 0, . . . , λk > 0 for some 1 ≤ k ≤ n + 1 with
∑k

i=1 λi = 1 and
∑k

i=1 λiyi = 0

such that

1/2 = Cl
1(D

2
1(·; Ln))(0) =

k
∑

i=1

λi(D
2
1(yi; L

n) + |yi|2). (5.41)

Since 1/2 is the minimum value of D2
1(y; L

n) + |y|2, we see that yi ∈ K0, hence

0 ∈ co[K0], which is a contradiction.

Proof of Proposition 3.9. For each γi : [0, δ] 7→ R
n, we may assume that the

image Γi is a graph of a function defined over the tangent line L+
i , that is, there

is a function fi : [0, δ] 7→ e⊥i such that the curve Γi can be parameterized as

gi(t) = tei + fi(t) with f(0) = 0, f ′
i(0+) = 0 and |f ′′

i (t)| ≤ M for t ∈ [0, δi] with

δi > 0 a constant for i = 1, 2, . . . ,m. Let λ > 0 be sufficiently large such that Rλ :=

2
√
2/
√
λ < δi for i = 1, 2, . . . ,m. Now we define Γi,λ = {tei + fi(t), 0 ≤ t ≤ Rλ}

and L+
i,λ = {tei, 0 ≤ t ≤ Rλ}. Then we have, for 0 ≤ t ≤ Rλ,

dist(tei; Γi,λ) ≤ |tei − (tei + fi(t))| = |fi(t)| ≤
∣

∣

∣

∣

∫ 1

0

(1− s)f ′′
i (st)t

2 ds

∣

∣

∣

∣

≤ MR2
λ

2
.

(5.42)

Similarly, for 0 ≤ t ≤ Rλ,

dist(tei + fi(t); L
+
i,λ) ≤ |fi(t)| ≤

MR2
λ

2
. (5.43)

Thus

distH(L+
i,λ, Γi,λ) ≤

MR2
λ

2
. (5.44)

Now we define, for each i = 1, 2, . . . ,m, the sets

Hi,λ =

{

tei + w, 0 ≤ t ≤ Rλ, w ∈ e⊥i , |w| ≤
MR2

λ

2

}

and Kλ = B̄(0;Rλ)
⋃

(

m
⋃

i=1

Hi,λ

)

.

(5.45)

Note that Γi ∩ (B̄(0; Rλ)∪Hi,λ) = Γi,λ. Now we have, by our locality property for

compensated convex transforms for bounded functions, Theorem 2.6, that

Cl
λ

(

D2
λ(·;

m
⋃

i=1

Γi)
)

(0) = Cl
λ

(

D2
λ(·;

m
⋃

i=1

Γi ∩Kλ)
)

(0)

= Cl
λ

(

D2
λ(·;

m
⋃

i=1

L+
i ∩Kλ)

)

(0) +
(

Cl
λ

(

D2
λ(·;

m
⋃

i=1

Γi ∩Kλ)
)

(0)− Cl
λ

(

D2
λ(·;

m
⋃

i=1

L+
i ∩Kλ)

)

(0)
)

:= I1 + I2.

(5.46)
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By the locality property of lower transforms Theorem 2.6, and Theorem 3.8, we

have

I1 = Cl
λ

(

D2
λ(·;

m
⋃

i=1

L+
i ∩Kλ)

)

(0) = Cl
λ

(

D2
λ(·;

m
⋃

i=1

L+
i )
)

(0) = 1/2 + µL , (5.47)

whereas

|I2| =
∣

∣

∣
Cl

λ

(

D2
λ(·;

m
⋃

i=1

Γi ∩Kλ)
)

(0)− Cl
λ

(

D2
λ(·;

m
⋃

i=1

L+
i ∩Kλ)

)

(0)
∣

∣

∣

≤ 2
√
λdistH

(

m
⋃

i=1

Γi ∩Kλ,

m
⋃

i=1

L+
i ∩Kλ

)

,

(5.48)

by Lemma 2.13. By the definition of Kλ, we have, for each i = 1, 2, . . . ,m,

Γi ∩Kλ = Γi,λ

⋃

(

m
⋃

j=1, j 6=i

(

(Γi ∩Hj,λ) \B(0;Rλ)
)

)

and L+
i ∩Kλ = L+

i,λ.

(5.49)

If x ∈ Γi,λ, we have

dist
(

x;

m
⋃

i=1

L+
i ∩Kλ

)

≤ dist(x; L+
i,λ) ≤

MR2
λ

2
, (5.50)

whereas if x ∈ Γi ∩ Hj,λ \ B(0;Rλ), then x = tej + w for some 0 ≤ t ≤ Rλ and

w ∈ e⊥i with |w| ≤ MR2
λ

2 , so that

dist
(

x;
m
⋃

i=1

L+
i ∩Kλ

)

≤ |x− tej| = |w| ≤ MR2
λ

2
. (5.51)

Thus

dist
(

x;

m
⋃

i=1

L+
i ∩Kλ

)

≤ MR2
λ

2
(5.52)

for all x ∈ Γi ∩Kλ.

Now if y ∈ ⋃m
i=1 L

+
i

⋂

Kλ, then x ∈ L+
i,λ for some i = 1, 2, . . . ,m, so that

dist
(

y;

m
⋃

i=1

Γi ∩Kλ

)

≤ dist(y; Γi,λ) ≤
MR2

λ

2
. (5.53)

Thus

distH
(

m
⋃

i=1

Γi ∩Kλ,

m
⋃

i=1

L+
i ∩Kλ

)

≤ MR2
λ

2
, (5.54)

so that

|I2| ≤ 2
√
λ
MR2

λ

2
=

2(2
√
2)2M√
λ

≤ µL/2 , (5.55)
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when λ > 0 is sufficiently large. Therefore

Cl
λ

(

D2
λ(·;

m
⋃

i=1

Γi)
)

(0) ≥ I1 − |I2| ≥
1

2
+

µL

2
. (5.56)

Consequently,

Iλ(0;

m
⋃

i=1

Γi) ≥ Jλ(0;

m
⋃

i=1

Γi) ≥ µL > 0. (5.57)

The proof is completed.

Proof of Theorem 3.10. This is a direct consequence of Theorem 3.8 and Propo-

sition 3.9 given that

Cl
λ

(

D2
λ(·;

m
⋃

j=1

Mj)
)

(0) ≥ Cl
λ

(

D2
λ(·;

m
⋃

j=1

Γj)
)

(0) (5.58)

if we let Γj be the image set of the mapping γi.

Proof of Corollary 3.11. Suppose Vi := {e(i)1 , . . . , e
(i)
si } is a basis of T0Mi,

i = 1, 2, . . . , k, where si = dim(T0Mi). Then if we consider the exponential map6,14,3

γi,j(s) := exp(te
(i)
j ), 0 ≤ s ≤ δi,j , with δi,j > 0, i = 1, 2, . . . , k, j = 1, 2, . . . , si, then

γi,j(s) are smooth geodesics of Mi. As span[V1, . . . , Vk] = R
n, the assumptions of

Theorem 3.10 apply and the conclusion follows.

Proof of Corollary 3.12. Since both M1 and M2 are smooth, we can find lin-

early independent unit vectors e
(i)
1 , . . . , e

(i)
n−1 ∈ T0Mi, i = 1, 2 such that gi,j(s) =

exp(se
(i)
j ) ∈ Mi are geodesics starting from 0. This can be seen from the local charts

of Mi containing 0. By Theorem 3.10, the conclusion then follows.
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