298 research outputs found
CARMA1 is a novel regulator of T-ALL disease and leukemic cell migration to the CNS
No abstract available
A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study
Background: Expressed Sequence Tags (ESTs) are a source of simple sequence repeats (SSRs) that can be used to develop molecular markers for genetic studies. The availability of ESTs for Quercus robur and Quercus petraea provided a unique opportunity to develop microsatellite markers to accelerate research aimed at studying adaptation of these long-lived species to their environment. As a first step toward the construction of a SSR-based linkage map of oak for quantitative trait locus (QTL) mapping, we describe the mining and survey of EST-SSRs as well as a fast and cost-effective approach (bin mapping) to assign these markers to an approximate map position. We also compared the level of polymorphism between genomic and EST-derived SSRs and address the transferability of EST-SSRs in Castanea sativa (chestnut). Results: A catalogue of 103,000 Sanger ESTs was assembled into 28,024 unigenes from which 18.6% presented one or more SSR motifs. More than 42% of these SSRs corresponded to trinucleotides. Primer pairs were designed for 748 putative unigenes. Overall 37.7% (283) were found to amplify a single polymorphic locus in a reference fullsib pedigree of Quercus robur. The usefulness of these loci for establishing a genetic map was assessed using a bin mapping approach. Bin maps were constructed for the male and female parental tree for which framework linkage maps based on AFLP markers were available. The bin set consisting of 14 highly informative offspring selected based on the number and position of crossover sites. The female and male maps comprised 44 and 37 bins, with an average bin length of 16.5 cM and 20.99 cM, respectively. A total of 256 EST-SSRs were assigned to bins and their map position was further validated by linkage mapping. EST-SSRs were found to be less polymorphic than genomic SSRs, but their transferability rate to chestnut, a phylogenetically related species to oak, was higher. Conclusion: We have generated a bin map for oak comprising 256 EST-SSRs. This resource constitutes a first step toward the establishment of a gene-based map for this genus that will facilitate the dissection of QTLs affecting complex traits of ecological importance
Design of a Customized Neck Orthosis for FDM Manufacturing with a New Sustainable Bio-composite
The interest in developing customized external orthopaedic devices,
thanks to the advent of Additive Manufacturing (AM), has grown in recent
years. Greater attention was focused on upper limb casts, while applications to
other body’s parts, such as the neck, were less investigated. In this paper the
computer aided design (CAD) modelling, assessment and 3D printing with
fused deposition modelling (FDM) of a customized neck orthosis are reported.
The modelling, based on anatomic data of a volunteer subject, was aimed to
obtain a lightweight, ventilated, hygienic and comfortable orthosis compared to
the produced medical devices generally used for neck injuries. CAD models
with different geometrical patterns, introduced for lightening and improving
breathability, were considered, specifically, a honeycomb pattern and an elliptical
holes pattern. These models were structurally assessed by means of finite
elements analysis (FEA). Furthermore, an innovative composite material was
considered for 3D printing. The material, Hemp Bio-Plastic® (HBP), composed
by polylactic acid (PLA) and hemp shives, offers different advantages including
lightweight, improved superficial finish and antibacterial properties. The results
obtained in terms of design methodology and manufacturing by 3D printing of a
prototype have shown the feasibility to develop customized cervical orthoses,
with potentially improved performance with respect to cervical collars available
on the market also thanks to the use of the innovative composite material
EVI1 activation in blast crisis CML due to juxtaposition to the rare 17q22 partner region as part of a 4-way variant translocation t(9;22)
<p>Abstract</p> <p>Background</p> <p>Variant translocations t(9;22) occur in 5 to 10% of newly diagnosed CMLs and additional genetic changes are present in 60–80% of patients in blast crisis (BC). Here, we report on a CML patient in blast crisis presenting with a four-way variant t(9;22) rearrangement involving the <it>EVI1 </it>locus.</p> <p>Methods</p> <p>Dual-colour Fluorescence In Situ Hybridisation was performed to unravel the different cytogenetic aberrations. Expression levels of <it>EVI1 </it>and <it>BCR/ABL1 </it>were investigated using real-time quantitative RT-PCR.</p> <p>Results</p> <p>In this paper we identified a patient with a complex 4-way t(3;9;17;22) which, in addition to <it>BCR/ABL1 </it>gene fusion, also resulted in <it>EVI1 </it>rearrangement and overexpression.</p> <p>Conclusion</p> <p>This report illustrates how a variant t(9;22) translocation can specifically target a second oncogene most likely contributing to the more aggressive phenotype of the disease. Molecular analysis of such variants is thus warranted to understand the phenotypic consequences and to open the way for combined molecular therapies in order to tackle the secondary oncogenic effect which is unresponsive to imatinib treatment.</p
Functional Analysis of Human Hematopoietic Stem Cell Gene Expression Using Zebrafish
Although several reports have characterized the hematopoietic stem cell (HSC) transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow CD34(+)CD33(−)CD38(−)Rho(lo)c-kit(+) cells, enriched for hematopoietic stem/progenitor cells with CD34(+)CD33(−)CD38(−)Rho(hi) cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO)-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23%) of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global gene profiling of HSCs
Identification of Hepatic Niche Harboring Human Acute Lymphoblastic Leukemic Cells via the SDF-1/CXCR4 Axis
In acute lymphoblastic leukemia (ALL) patients, the bone marrow niche is widely known to be an important element of treatment response and relapse. Furthermore, a characteristic liver pathology observed in ALL patients implies that the hepatic microenvironment provides an extramedullary niche for leukemic cells. However, it remains unclear whether the liver actually provides a specific niche. The mechanism underlying this pathology is also poorly understood. Here, to answer these questions, we reconstituted the histopathology of leukemic liver by using patients-derived primary ALL cells into NOD/SCID/Yc null mice. The liver pathology in this model was similar to that observed in the patients. By using this model, we clearly demonstrated that bile duct epithelial cells form a hepatic niche that supports infiltration and proliferation of ALL cells in the liver. Furthermore, we showed that functions of the niche are maintained by the SDF-1/CXCR4 axis, proposing a novel therapeutic approach targeting the extramedullary niche by inhibition of the SDF-1/CXCR4 axis. In conclusion, we demonstrated that the liver dissemination of leukemia is not due to nonselective infiltration, but rather systematic invasion and proliferation of leukemic cells in hepatic niche. Although the contribution of SDF-1/CXCR4 axis is reported in some cancer cells or leukemic niches such as bone marrow, we demonstrated that this axis works even in the extramedullary niche of leukemic cells. Our findings form the basis for therapeutic approaches that target the extramedullary niche by inhibiting the SDF-1/CXCR4 axis
Splicing modulation as novel therapeutic strategy against diffuse malignant peritoneal mesothelioma
Introduction: Therapeutic options for diffuse malignant peritoneal mesothelioma (DMPM) are limited to surgery and locoregional chemotherapy. Despite improvements in survival rates, patients eventually succumb to disease progression. We investigated splicing deregulation both as molecular prognostic factor and potential novel target in DMPM, while we tested modulators of SF3b complex for antitumor activity. Methods: Tissue-microarrays of 64 DMPM specimens were subjected to immunohistochemical assessment of SF3B1 expression and correlation to clinical outcome. Two primary cell cultures were used for gene expression profiling and in vitro screening of SF3b modulators. Drug-induced splicing alterations affecting downstream cellular pathways were detected through RNA sequencing. Ultimately, we established bioluminescent orthotopic mouse models to test the efficacy of splicing modulation in vivo. Results: Spliceosomal genes are differentially upregulated in DMPM cells compared to normal tissues and high expression of SF3B1 correlated with poor clinical outcome in univariate and multivariate analysis. SF3b modulators (Pladienolide-B, E7107, Meayamycin-B) showed potent cytotoxic activity in vitro with IC50 values in the low nanomolar range. Differential splicing analysis of Pladienolide-B-treated cells revealed abundant alterations of transcripts involved in cell cycle, apoptosis and other oncogenic pathways. This was validated by RT-PCR and functional assays. E7107 demonstrated remarkable in vivo antitumor efficacy, with significant improvement of survival rates compared to vehicle-treated controls. Conclusions: SF3B1 emerged as a novel potential prognostic factor in DMPM. Splicing modulators markedly impair cancer cell viability, resulting also in potent antitumor activity in vivo. Our data designate splicing as a promising therapeutic target in DMPM
Phosphorylation of the Leukemic Oncoprotein EVI1 on Serine 196 Modulates DNA Binding, Transcriptional Repression and Transforming Ability
The EVI1 (ecotropic viral integration site 1) gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML) is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA) derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196) in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D), which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain
The Oncoprotein EVI1 and the DNA Methyltransferase Dnmt3 Co-Operate in Binding and De Novo Methylation of Target DNA
EVI1 has pleiotropic functions during murine embryogenesis and its targeted disruption leads to prenatal death by severely affecting the development of virtually all embryonic organs. However, its functions in adult tissues are still unclear. When inappropriately expressed, EVI1 becomes one of the most aggressive oncogenes associated with human hematopoietic and solid cancers. The mechanisms by which EVI1 transforms normal cells are unknown, but we showed recently that EVI1 indirectly upregulates self-renewal and cell-cycling genes by inappropriate methylation of CpG dinucleotides in the regulatory regions of microRNA-124-3 (miR-124-3), leading to the repression of this small gene that controls normal differentiation and cell cycling of somatic cells. We used the regulatory regions of miR-124-3 as a read-out system to investigate how EVI1 induces de novo methylation of DNA. Here we show that EVI1 physically interacts with DNA methyltransferases 3a and 3b (Dnmt3a/b), which are the only de novo DNA methyltransferases identified to date in mouse and man, and that it forms an enzymatically active protein complex that induces de novo DNA methylation in vitro. This protein complex targets and binds to a precise region of miR-124-3 that is necessary for repression of a reporter gene by EVI1. Based on our findings, we propose that in cooperation with Dnmt3a/b EVI1 regulates the methylation of DNA as a sequence-specific mediator of de novo DNA methylation and that inappropriate EVI1 expression contributes to carcinogenesis through improper DNA methylation
- …