146 research outputs found

    Studies on processing, particle formation, and immunogenicity of the HIV-1 gag gene product: a possible component of a HIV vaccine

    Get PDF
    Antigens in a particulate conformation were shown to be highly immunogenic in mammals. For this reason, the particle forming capacity of derivatives of the HIV-1 group specific core antigen p55 gag was assayed and compared dependent on various expression systems: recombinant bacteria, vaccinia- and baculoviruses were established encoding the entire core protein p55 either in its authentic sequence or lacking the myristylation consensus signal. Moreover, p55 gag was expressed in combination with the protease (p55-PR) or with the entire polymerase (p55-pol), respectively. Budding of 100-160 nm p55 core particles, resembling immature HIV-virions, was observed in the eucaryotic expression systems only. In comparison to the vaccinia virus driven expression of p55 in mammalian cells, considerably higher yields of particulate core antigen were obtained by infection of Spodoptera frugiperda (Sf9) insect cells with the recombinant Autographa californica nuclear polyhedrosis (AcMNPV) baculovirus. Mutation of the NH2-terminal myristylation signal sequence prevented budding of the immature core particles. Expression of the HIV p55-PR gene construct by recombinant baculovirus resulted in complete processing of the p55 gag precursor molecule in this system. The introduction of an artificial frameshift near the natural frameshift site resulted in constitutive expression of the viral protease and complete processing of p55, both in Escherichia coli and in vaccinia virus infected cells. Interestingly, significant processing of p55 resembling that of HIV infected H9 cells could also be achieved in the vaccinia system by fusing the entire pol gene to the gag gene. Moreover, processing was not found to be dependent on amino-terminal myristylation of the gag procursor molecule, which is in contrast to observations with type C and type D retrovirus. However, complete processing of p55 into p24, p17, p9 and p6 abolished particle formation. Purified immature HIV-virus like particles were highly immunogenic in rabbits, leading to a strong humoral immune response after immunization. Empty immature p55 gag particles represent a noninfectious and attractive candidate for a basic vaccine component

    Immunological reactivity of a human immunodeficiency virus type I derived peptide representing a consensus sequence of the GP120 major neutralizing region V3

    Get PDF
    To reduce the opportunities for human immunodeficiency virus type 1 (HIV-1) to evade vaccine induced immunity, the development of subunit vaccines must focus on the characterization of immunogenic epitopes, which are major targets for the immune system. The most dominant site for elicitation of neutralising immune response is located on the external envelope glycoprotein gp120 within the third variable domain (V3). To overcome virus type specificity of antibodies directed to the V3-domain we designed a 36 amino acids long gp120/V3-consensus peptide (V3-C36) based on published biological data and sequence comparisons of various HIV-1 virus isolates. This peptide contains a conserved core sequence which is suggested to form a surface-exposed beta-turn. This peptide also includes T-cell epitopes defined in mice and humans, an ADCC-epitope and two highly conserved cysteine residues which were oxidized to form a cystine derivate, thus allowing correct peptide folding. In ELISA-tests, this peptide reacts with at least 90% of randomly selected sera of European and African patients infected with HIV-1 and is recognized by three different HIV-1/V3 "type-specific" antisera (MN, RF, IIIB-strain). Using this peptide as immunogen in rabbits, antisera could be raised with highly cross-reactive and HIV-1/IIIB strain neutralizing properties. Moreover, HTLV/HIV-1/IIIB specific cytotoxic T-lymphocytes (CTLs) of BALB/c mice infected with a gp120 recombinant vaccinia virus recognized the central 16- and 12-mer peptides of the V3-C36 consensus peptide in cytolytic assays, indicating perfect compatibility of the consensus peptide with the IIIB-primed CTLs. The DNA-sequence encoding the V3-consensus loop region might be an important component in newly designed recombinant subunit vaccines. In addition, due to its broad serological reactivity, the V3-consensus peptide might play an important role in special diagnostic purposes

    High (but Not Low) Urinary Iodine Excretion Is Predicted by Iodine Excretion Levels from Five Years Ago

    Get PDF
    Background: It has not been investigated whether there are associations between urinary iodine (UI) excretion measurements some years apart, nor whether such an association remains after adjustment for nutritional habits. The aim of the present study was to investigate the relation between iodine-creatinine ratio (ICR) at two measuring points 5 years apart. Methods: Data from 2,659 individuals from the Study of Health in Pomerania were analyzed. Analysis of covariance and Poisson regressions were used to associate baseline with follow-up ICR. Results: Baseline ICR was associated with follow-up ICR. Particularly, baseline ICR >300 mu g/g was related to an ICR >300 mu g/g at follow-up (relative risk, RR: 2.20; p < 0.001). The association was stronger in males (RR: 2.64; p < 0.001) than in females (RR: 1.64; p = 0.007). In contrast, baseline ICR <100 mu g/g was only associated with an ICR <100 mu g/g at follow-up in males when considering unadjusted ICR. Conclusions: We detected only a weak correlation with respect to low ICR. Studies assessing iodine status in a population should take into account that an individual with a low UI excretion in one measurement is not necessarily permanently iodine deficient. On the other hand, current high ICR could have been predicted by high ICR 5 years ago. Copyright (C) 2011 S. Karger AG, Base

    Evolutionarily Conserved Herpesviral Protein Interaction Networks

    Get PDF
    Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species

    ViralORFeome: an integrated database to generate a versatile collection of viral ORFs

    Get PDF
    Large collections of protein-encoding open reading frames (ORFs) established in a versatile recombination-based cloning system have been instrumental to study protein functions in high-throughput assays. Such ‘ORFeome’ resources have been developed for several organisms but in virology, plasmid collections covering a significant fraction of the virosphere are still needed. In this perspective, we present ViralORFeome 1.0 (http://www.viralorfeome.com), an open-access database and management system that provides an integrated set of bioinformatic tools to clone viral ORFs in the Gateway® system. ViralORFeome provides a convenient interface to navigate through virus genome sequences, to design ORF-specific cloning primers, to validate the sequence of generated constructs and to browse established collections of virus ORFs. Most importantly, ViralORFeome has been designed to manage all possible variants or mutants of a given ORF so that the cloning procedure can be applied to any emerging virus strain. A subset of plasmid constructs generated with ViralORFeome platform has been tested with success for heterologous protein expression in different expression systems at proteome scale. ViralORFeome should provide our community with a framework to establish a large collection of virus ORF clones, an instrumental resource to determine functions, activities and binding partners of viral proteins

    Infidelity of SARS-CoV Nsp14-Exonuclease Mutant Virus Replication Is Revealed by Complete Genome Sequencing

    Get PDF
    Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution

    Genome-Wide Analysis of Protein-Protein Interactions and Involvement of Viral Proteins in SARS-CoV Replication

    Get PDF
    Analyses of viral protein-protein interactions are an important step to understand viral protein functions and their underlying molecular mechanisms. In this study, we adopted a mammalian two-hybrid system to screen the genome-wide intraviral protein-protein interactions of SARS coronavirus (SARS-CoV) and therefrom revealed a number of novel interactions which could be partly confirmed by in vitro biochemical assays. Three pairs of the interactions identified were detected in both directions: non-structural protein (nsp) 10 and nsp14, nsp10 and nsp16, and nsp7 and nsp8. The interactions between the multifunctional nsp10 and nsp14 or nsp16, which are the unique proteins found in the members of Nidovirales with large RNA genomes including coronaviruses and toroviruses, may have important implication for the mechanisms of replication/transcription complex assembly and functions of these viruses. Using a SARS-CoV replicon expressing a luciferase reporter under the control of a transcription regulating sequence, it has been shown that several viral proteins (N, X and SUD domains of nsp3, and nsp12) provided in trans stimulated the replicon reporter activity, indicating that these proteins may regulate coronavirus replication and transcription. Collectively, our findings provide a basis and platform for further characterization of the functions and mechanisms of coronavirus proteins
    corecore