77 research outputs found

    The effectiveness of injury prevention programs to modify risk factors for non-contact anterior cruciate ligament and hamstring injuries in uninjured team sports athletes: A systematic review

    Get PDF
    Background Hamstring strain and anterior cruciate ligament injuries are, respectively, the most prevalent and serious non-contact occurring injuries in team sports. Specific biomechanical and neuromuscular variables have been used to estimate the risk of incurring a non-contact injury in athletes. Objective The aim of this study was to systematically review the evidences for the effectiveness of injury prevention protocols to modify biomechanical and neuromuscular anterior cruciate and/or hamstring injuries associated risk factors in uninjured team sport athletes. Data Sources PubMed, Science Direct, Web of Science, Cochrane Libraries, U.S. National Institutes of Health clinicaltrials.gov, Sport Discuss and Google Scholar databases were searched for relevant journal articles published until March 2015. A manual review of relevant articles, authors, and journals, including bibliographies was performed from identified articles. Main Results Nineteen studies were included in this review. Four assessment categories: i) landing, ii) side cutting, iii) stop-jump, and iv) muscle strength outcomes, were used to analyze the effectiveness of the preventive protocols. Eight studies using multifaceted interventions supported by video and/or technical feedback showed improvement in landing and/or stop-jump biomechanics, while no effects were observed on side-cutting maneuver. Additionally, multifaceted programs including hamstring eccentric exercises increased hamstring strength, hamstring to quadriceps functional ratio and/or promoted a shift of optimal knee flexion peak torque toward a more open angle position. Conclusions Multifaceted programs, supported by proper video and/or technical feedback, including eccentric hamstring exercises would positively modify the biomechanical and or neuromuscular anterior cruciate and/or hamstring injury risk factors

    The number of directional changes alters the physiological, perceptual and neuromuscular responses of netball players during intermittent shuttle running

    Get PDF
    This is a non-final version of an article published in final form in Journal of Strength and Conditioning Research, Vol 29, issue 10, October 2015.This study investigated whether an increased number of changes in direction altered the metabolic, cardiovascular, perceptual and neuromuscular responses to intermittent shuttle running. Using a randomized crossover design, ten female netball players completed 30 min of intermittent shuttle running over a 10 m (ISR10) and 20 m (ISR20) linear course. Measures of expired air, heart rate (HR), RPE, blood lactate concentration ([BLa]) and peak torque of knee extensors and flexors were measured. Differences (% ± 90% CL) in VO2 (1.5 ± 5.6%) was unclear between conditions, while HR was possibly higher (1.5 ± 2.5%) and [BLa] very likely lower in ISR20 compared to ISR10 (-32.7 ± 9.9%). RPE was likely lower in the ISR20 compared to the ISR10 condition at 15 (-5.0 ± 5.0%) and mosly likely lower at 30 min (-9.4 ± 2.0%). Sprint times over 20 m were likely slower during ISR20 at mid (3.9 ± 3.2%) but unclear post (2.1 ± 5.4%). Changes in muscle function were not different between ISR10 and ISR20 conditions for knee extension (-0.2 ± 0.9%) but were likely different for knee flexion (-5.7 ± 4.9%). More directional changes during shuttle running increases the physiological and perceptual load on female athletes that also causes a greater reductions in knee extensor torque. These findings have implications for the effective conditioning and injury prevention of female team sport athletes

    A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running

    Get PDF
    Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs

    The Effect of Nordic Hamstring Strength Training on Muscle Architecture, Stiffness, and Strength

    Get PDF
    Purpose: Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Methods: Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. Results: The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm3, p\u3c0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm2, p=0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. Conclusions: The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is therefore warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk

    Effects of two neuromuscular training programs on running biomechanics with load carriage: a study protocol for a randomised controlled trial

    Get PDF
    Background In recent years, athletes have ventured into ultra-endurance and adventure racing events, which tests their ability to race, navigate, and survive. These events often require race participants to carry some form of load, to bear equipment for navigation and survival purposes. Previous studies have reported specific alterations in biomechanics when running with load which potentially influence running performance and injury risk. We hypothesize that a biomechanically informed neuromuscular training program would optimize running mechanics during load carriage to a greater extent than a generic strength training program. Methods This will be a two group, parallel randomized controlled trial design, with single assessor blinding. Thirty healthy runners will be recruited to participate in a six weeks neuromuscular training program. Participants will be randomized into either a generic training group, or a biomechanically informed training group. Primary outcomes include self-determined running velocity with a 20 % body weight load, jump power, hopping leg stiffness, knee extensor and triceps-surae strength. Secondary outcomes include running kinetics and kinematics. Assessments will occur at baseline and post-training. Discussion To our knowledge, no training programs are available that specifically targets a runner’s ability to carry load while running. This will provide sport scientists and coaches with a foundation to base their exercise prescription on

    Asymmetry after Hamstring Injury in English Premier League: Issue Resolved, Or Perhaps Not?

    No full text
    International audienc

    Carrying a Ball Can Influence Sidestepping Mechanics in Rugby

    No full text
    Sidestepping mechanics have been implicated as a risk factor for knee injury in rugby. Carrying a ball is proposed to alter movement patterns. Therefore the purpose of the study was to examine the effects of sidestepping with a ball compared to sidestepping without a ball on lower-extremity biomechanics in male rugby athletes. Three-dimensional kinematics of 18 male rugby athletes were recorded during a maximal effort 45° sidestepping task without and with a ball. Sidestepping with a ball resulted in 15% greater knee adduction angle during weight acceptance and 18% greater hip adduction angle during peak pushoff than without a ball. Future biomechanical evaluations of athletes require the inclusion of the ball specific to the sport to ensure accurate interpretation of movement patterns

    The influence of head impact threshold for reporting data in contact and collision sports: system review and original data analysis

    Get PDF
    Background Head impacts and resulting head accelerations cause concussive injuries. There is no standard for reporting head impact data in sports to enable comparison between studies. Objective The aim was to outline methods for reporting head impact acceleration data in sport and the effect of the acceleration thresholds on the number of impacts reported. Methods A systematic review of accelerometer systems utilised to report head impact data in sport was conducted. The effect of using different thresholds on a set of impact data from 38 amateur senior rugby players in New Zealand over a competition season was calculated. Results Of the 52 studies identified, 42 % reported impacts using a[10-g threshold, where g is the acceleration of gravity. Studies reported descriptive statistics as mean ± standard deviation, median, 25th to 75th interquartile range, and 95th percentile. Application of the varied impact thresholds to the New Zealand data set resulted in 20,687 impacts of [10 g, 11,459 (45 % less) impacts of[15 g, and 4024 (81 % less) impacts of[30 g. Discussion Linear and angular raw data were most frequently reported. Metrics combining raw data may be more useful; however, validity of the metrics has not been adequately addressed for sport. Differing data collectionmethods and descriptive statistics for reporting head impacts in sports limit inter-study comparisons. Consensus on data analysis methods for sports impact assessment is needed, including thresholds. Based on the available data, the 10-g threshold is the most commonly reported impact threshold and should be reported as the median with 25th and 75th interquartile ranges as the data are non-normally distributed. Validation studies are required to determine the best threshold and metrics for impact acceleration data collection in sport. Conclusion Until in-field validation studies are completed, it is recommended that head impact data should be reported as median and interquartile ranges using the 10-g impact threshold
    • …
    corecore