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Abstract 

Background: Head impacts and resulting head accelerations cause concussive injuries. There is no standard for 

reporting head impact data in sports to enable comparison between studies.  

Objective: To outline methods for reporting head impact acceleration data in sport and the effect of the 

acceleration thresholds on the number of impacts reported.  

Methods: A systematic review of accelerometer systems utilised to report head impact data in sport. Calculation 

of the effect of using different thresholds on a set of  impact data from 38 amateur senior rugby players in New 

Zealand (NZ) over a competition season. 

Results: Of 52 studies identified, 42% reported impacts using >10g threshold. Studies reported descriptive 

statistics as mean ±standard deviation, median, 25th to 75th interquartile range, and 95th percentile. Application of 

the varied impact thresholds to the NZ data set resulted in 20,687 impacts >10g; 11,459 (45% less) impacts 

>15g; and 4,024 (81% less) impacts >30g.  

Discussion: Linear and angular raw data were most frequently reported. Metrics combining raw data may be 

more useful, however validity of the metrics has not been adequately addressed for sport. Differing data 

collection methods and descriptive statistics for reporting head impacts in sports limits inter-study comparisons. 

Consensus on data analysis methods for sports impact assessment is needed, including thresholds. Based on 

the available data, the 10g threshold is the most commonly reported impact threshold and should be reported as 

the median with 25th and 75th interquartile ranges as the data is non-normal distributed. Validation studies are 

required to determine the best threshold and metrics for impact acceleration data collection in sport.  

Conclusion: Until in-field validation studies are completed, it is recommended that head impact data should be 

reported as median and interquartile ranges using the 10g impact threshold. 
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1. Introduction 

 

1.1 Head impacts cause injury – evidence 

Known as the ‘silent injury’,[1] and often reported by the media and sporting circles as a ‘knock to the head’,[2] 

sport-related concussions (hereafter called ‘concussion’) are a subset of mild traumatic brain injuries 

(mTBIs)[3] and have become an increasingly serious concern for all sporting activities worldwide.[4-6]  

Research into concussions[7] has increased over the years leading to greater insight into the causes and 

the effects of these injuries. Research[8-27] has sought to better determine the head linear and rotational 

accelerations involved in concussion injuries through the use of telemetry. By adapting radio-telemetry 

that was utilised for astronauts,[28] the telemetry system has been in use since 1961 for the recording of 

impacts for football players and concussions[29] that have occurred. 

1.2 A cumulative head impact threshold may be related to concussion  

The immediate and long term effects of multiple and repeated blows to the head that athletes receive in contact 

sporting environments are a growing concern in clinical practice.[30, 31] Concern has grown about the effects of 

subconcussive impacts to the head and how these impacts may adversely affect cerebral functions.[30-32] 

Subconcussive events are impacts that occur where there is an apparent brain insult with insufficient force to 

result in the hallmark signs and symptoms of a concussion.[31, 33, 34] Although subconcussive events do not result 

in observable signs and apparent behavioural alterations,[35, 36]  they can cause damage to the central nervous 

system and have the potential to transfer a high degree of linear and rotational acceleration forces to the brain.[37] 

Proposed decades previously,[38, 39] exposure to repetitive subconcussive blows to the head may result in similar, 

if not greater damage than a single concussive event[33] and may have cumulative effects.[40]  

Participants can be exposed to a high number of impacts per season.[32] It has been suggested[41, 42] that brain 

injuries come from concussive events and also from the accumulation of subconcussive impacts that result in 

pathophysiological changes in the brain. As subconcussive impacts do not result in observable concussion 

related signs and symptoms, these are often not medically diagnosed. The accumulation of subconcussive blows 

can result in neuropsychological changes.[30, 31, 42-46] However, similar to the literature focused on concussion and 

mild traumatic brain injury (mTBI), the literature on subconcussive head trauma is limited.[47] What is not known is 

the number of head impacts and their intensity that might lead to concussion (i.e. a concussion cumulative 

threshold). The injury threshold is likely to be different for each person given the multifactorial nature of injuries, 

as per other thresholds for injuries to tendons, ligaments, muscle and bone. If a threshold could be determined, 

then players could be monitored to reduce their potential risk for concussion injury – akin to cricket monitoring 

players loading to the body during bowling events via the number of overs in an attempt to reduce the risk of 

back stress fractures.[48] 

 

1.3 Impacts can be measured with a number of technologies 
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Head impact dynamics have been analysed through the use of video analysis,[8] in game measurements,[20-25, 27, 

49-52]  numerical methods[9-12] and reconstructions using anthropometric test devices[13-19] in helmeted sports such 

as American football[20-23] and ice hockey[24, 25] and in un-helmeted sports such as soccer[26] and rugby union.[27]  

The on-field assessment of head impacts has been captured with a head impact telemetry system (HITS) 

(Simbex, LLC, Lebanon, NH) using helmet mounted accelerometers enabling determination of the head linear 

and rotational accelerations in American football,[21, 23, 49, 53-55] ice hockey[24, 25] and in a headband in youth 

soccer.[26] The data collected through the HITS has enabled analytical risk functions,[16, 51, 56, 57] concussion risk 

curves,[51] and risk weighted exposure metrics[58] to be developed further assisting in the identification of sports 

participants at risk of concussive injuries. More recently, instrumented mouthguards known as XGuard 

(X2biosystems, Inc., Seattle, WA, USA) have documented head impacts in rugby union.[27] 

 

1.4 Thresholds have differed for reporting impact data in contact and collision sports 

Although there is an increasing amount of published literature reporting impact accelerations to the head in the 

sporting environment, there is less attention focussed on identifying what is a subconcussive impact and where 

this occurs. Studies[55, 59, 60] have been conducted reporting the impacts absorbed by the head during activities 

undertaken daily. Although impacts to the head and body under 10g have been reported[55], these activities such 

as walking, jumping, running and sitting are considered to be non-contact events.[21, 61] However, impacts greater 

than 10g  occurring from contact events that do not result in acute signs or symptoms of concussion, are 

identified as subconcussive impacts.[43]  

 

1.5 To enable comparison of studies, a consistent threshold for reporting is needed 

Head impact data are essential to understand the biomechanics of head injury to develop potential injury 

prevention strategies. There is currently no standard for reporting head impact data to enable comparison 

between studies. Currently the use of accelerometers may not necessarily provide the meaningful inter-study 

comparisons that are sought due to data collection, processing and methodologies not being standardized.[62] 

Studies utilising different impact thresholds have proposed varying conclusions based on the methodological and 

reporting approaches undertaken.  

 

1.6 Aim of the study 

The rationale for this study is based on questions around the magnitude of a single impact that may result in 

concussion, the number of impacts needed to result in signs and symptoms of concussion, and individual player 

differences that might affect injury tolerance levels for concussion. Given head impacts are likely to cause 

concussive injury, and the number of head impacts may be related to a potential concussion threshold (i.e. a 

cumulative threshold), the number of head impacts should be monitored in players. However, given impacts can 
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be measured with a number of technologies (e.g. instrumented behind the ear patches, mouthguards, head 

gear), and thresholds have differed for reporting impact data in contact and collision sports, a threshold for 

reporting impact data in sport is needed to enable comparison of studies. 

Therefore the aims of this study were to: a) outline the methods for reporting head impact data in sport; and b) to 

identify the effects of the acceleration threshold on the impacts reported. 

 

2. Methods 

To outline methods for reporting head impact data, a systematic review of the literature was conducted. The 

guideline for reporting observational studies (MOOSE: Meta-analysis Of Observational Studies in 

Epidemiology)[63] was followed for the empirical literature evidence included in this study. The MOOSE checklist 

contains specifications and guidelines for the conduct and review of the studies. To evaluate the effects of 

acceleration thresholds on the number of impacts reported, variable thresholds were applied to head impact data 

obtained from 38 senior amateur rugby union players during 19 matches in New Zealand.[27] 

 

2.1 Literature review to identify thresholds for reporting head impact data in contact and collision 

sport 

2.1.1 Search strategy for identification of publications 

A total of 53,183 studies available online from Jan 1990 to June 2015 identified through the SCOPUS 

(n=10,080), SportDiscus (n= 1,185), OVID (n= 9,724), Science Direct (n= 27,798) and Health Sciences (n= 

4,376) databases were screened for eligibility (see Fig. 1). The keywords utilized for the search of relevant 

research studies included combinations of ‘head impact telemetry system*’, ‘HITS’, ‘concussion’, ‘impact*’, 

‘traumatic brain injury’, ‘chronic traumatic encephalopathy’, ‘angular’, ‘linear’, ‘rotational’, ‘acceleration’, 

‘biomechanics’, ‘head acceleration’ and ‘risk’. An example of the Health Sciences search strategy is provided in 

the Electronic Supplementary Material (ESM) S1. Searches were limited to ‘English language’ and ‘humans’ only. 

The references of all relevant articles were searched for further articles. All publications identified were initially 

screened by publication title and abstract to identify eligibility. In cases of discrepancies of eligibility another 

author assessed the publication to screen for eligibility.  

To establish some control over heterogeneity of the studies,[63] inclusion criteria were established. Any published 

study or book that did not meet the inclusion criteria was excluded from the study. Publications were included if 

they reported head impact biomechanics and met the following inclusion criteria:  

(i) The study was published in a peer reviewed journal or book; and  

(ii) The study reported the biomechanics of impacts to the head in a sporting environment; and 

(iii) The study addressed one or more of the keywords relating to this study. 
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Reviewed studies were excluded from this review if it was identified that the publication:   

(i) Was unavailable in English; or 

(ii) Did not provide additional information specifically addressing areas relating to this study;  

(iii) Was a case study; or  

(iv) Reviewed head impact studies. 

 

2.1.2 Assessment of publication quality 

The 52 studies[10, 12, 16, 20-27, 32, 37, 42, 49, 51-54, 57, 58, 61, 64-92]  meeting the inclusion criteria (see Table 1) were 

assessed for quality by two of the authors on the basis of the MOOSE[63] published checklist. Heterogeneity of 

the studies included in the literature review was expected as there might be differences in the study design, 

population and outcomes.[63] As a result of the MOOSE[63] checklist, the studies included had a median score of 

4.8/6.0 with a range of 4.0-5.0. 

 

2.2 Application of head impact thresholds identified from the literature to the rugby head impact 

data set 

The data set, used for the application of the head impact thresholds identified from the literature review, was 

from 38 amateur rugby union players who wore instrumented mouthguards over a season of matches.[27] The 

raw data set was filtered by linear acceleration thresholds at increments of 1g to establish the percentage of 

impacts removed at each threshold from 10.0g to 30.0g. This percentage was then used to calculate the possible 

number of impacts removed for the impact thresholds used in the different studies reviewed.  

All data estimations were calculated on an Excel spreadsheet. The data were analysed using SPSS v22.0.0 

(SPSS Inc.) and, as the data were non-normally distributed (Shapiro-Wilk test p<0.001), data were analysed 

using a Friedman repeated measures ANOVA on ranks. Post hoc analysis with Wilcoxon signed-rank tests was 

conducted with a Bonferroni correction applied. Statistical significance was set at p<0.05. The estimated number 

of impacts were calculated by dividing the number of reported impacts by the estimated percentage of impacts 

removed at the different thresholds. The estimated total number of reported impacts were subtracted from the 

reported number of impacts to identify the possible number of impacts removed from the data set e.g. Number of 

impacts reported = 161,732;[75, 76] Impact threshold = 14.4g; Based on New Zealand rugby union dataset for 

20,687 impacts recorded at 10.0g when reassessed at 14.4g there were 12,091 impacts. A total of 8,569 impacts 

were removed or 42% of the data set (see Fig 2). Therefore 161,732 (number of impacts reported) ÷ 42% 

(percentage of impacts removed at 14.4g) gave a possible total number of impacts at the 10g threshold of 

385,076. The possible total number of impacts removed from the dataset was 223,344 (i.e. 385,076 – 161,732 

impacts).  
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3. Findings 

3.1 Literature review 

A total of 52 publications were identified that reported head impacts and met the inclusion criteria. Studies 

reported impacts to the head via technology in American football,[21, 22, 26, 37, 49, 51, 52, 54, 58, 61, 64, 65, 67, 69, 73, 75, 76, 79, 80, 85] 

ice hockey,[24, 25, 71, 72, 84, 92] soccer,[26] rugby union[27] and mixed martial arts and boxing.[64]  

 

3.1.1 Impact threshold 

Studies utilised different data impact acceleration thresholds (see Table 1): 42% of studies[21, 22, 24, 26, 27, 49, 52, 54, 61, 

64-74] used 10g; 18% of studies[20, 23, 42, 51, 53, 58, 75-78] used 14.4g;10% of studies[37, 79-83] used 15g; 4% of studies[25, 84] 

used 20g; 2% of studies[85] used 30g; 4% of studies[32, 86] reported impact data within 10g to 60g and greater than 

90g. Four studies[10, 12, 16, 87] (8%) were reconstruction studies from video analysis but were included as they 

reported impact biomechanics. Six studies[57, 88-92] (12%) did not report the impact threshold but did report head 

impact biomechanics. One study[64] (2%) used a 7g and 10g threshold with different sporting activities. 

 

3.2 Acceleration raw data and metrics 

Apart from raw resultant linear accelerations[32, 49, 52, 61, 65, 68, 85, 86, 91]  (reported in 91% of studies) and rotational 

acceleration data[10, 51] (reported in 76% of studies),[12, 16, 20-24, 26, 27, 37, 54, 57, 58, 66, 69-83, 87-90] several head impact 

derived variables were reported such as the Gadd Severity Index (GSI),[93] the Head Impact Criterion (HIC),[94] 

Head Impact Telemetry Severity Profile (HITSP)[90] and the Risk Weighted Cumulative Exposure (RWE)[58] 

metrics.  

 

Three (4%) of the studies[26, 49, 75] reported the Gadd Severity Index (GSI). In 1966, Gadd[93] proposed the GSI 

head injury severity index based on the Wayne State Tolerance Curve (WSTC). Developed from animal and 

cadaver impact data, the GSI simplified the WSTC by taking into consideration the shape of the linear 

acceleration time history, providing a weighting factor of 2.5 enabling the whole body acceleration data to be 

plotted on log-log coordinates along a straight line. The critical value of the GSI is 1,000. If the GSI is less than 

1,000 then the head impact is considered probabilistically safe. The GSI is used to quantify severe skull fractures 

and brain injury risk but is not recommended for use to quantify a risk of concussion.[95] A concern of the GSI is 

that it can give unrealistically high values for impacts that have a much longer pulse duration.[96] The 

mathematical expression for the GSI is: 

𝐺𝑆𝐼 = ∫ 𝑎(𝑡)2.5𝑑𝑡

𝑇

0
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where a is the ‘effective’ acceleration (thought to have been the average linear acceleration) of the head 

measured in terms of g, the acceleration of gravity, and t is the time in milliseconds from the start of the 

impact.[97]  

 

In 1971 a modification of the Gadd Severity Index, the Head Injury Criterion (HIC), was proposed[94] to focus the 

severity index on that part of the impact that was likely to be relevant to the risk of injury to the brain. This was 

done by averaging the integration of the resultant acceleration/time curve over whatever time interval yielded the 

maximum value of HIC. Because this varies from one impact to another, the expression for the modified index 

simply refers to times t1 and t2. The HIC is computed based on the following expression: 

𝐻𝐼𝐶 =  [
1

𝑡2 − 𝑡1

 ∫ 𝑎(𝑡)𝑑𝑡

𝑡2

𝑡1

]
5/2

 
 

(𝑡2 − 𝑡1) 

where t2 and t1 are any two arbitrary time points during the acceleration pulse. Acceleration is measured in 

multiples of the acceleration of gravity [g] and time is measured in seconds. The resultant acceleration is used for 

the calculation. The US National Highway Traffic Safety Administration (NHTSA) requires t2 and t1 not to be more 

than 36 ms apart (thus called HIC36) and the maximum HIC36 not to exceed 1,000. In 1998[98] the NHTSA 

introduced the HIC15 where t2 and t1 was not to be more than 15 ms apart and the maximum HIC15 was not to 

exceed 700. In a numerical study[99] it was estimated that a mild Traumatic Brain Injury (mTBI) tolerance for the 

HIC15, where there is a 25%, 50% and 75% likelihood of an mTBI occurring, had HIC15 values of 136, 235 and 

333 respectively.  Only two studies[24, 76] (4%) reported HIC36 with ten studies (18%) reporting the HIC15.[10, 12, 16, 24, 

26, 49, 68, 75, 76, 90]  

  

In 2008,[90] the principal component score (PCS), a weighted sum of linear acceleration, rotational acceleration, 

HIC and GSI, with objectively defined weights, was published.  Now more commonly termed the Head Impact 

Telemetry Severity Profile (HITSP), the HITSP is a weighted composite score including linear and rotational 

accelerations, impact duration, as well as impact location. The resulting formula is: 

𝐻𝐼𝑇𝑆𝑃 = 10𝑥([0.4718 𝑥 𝑠𝐺𝑆𝐼 + 0.4742 𝑥 𝑠𝐻𝐼𝐶 + 0.4336 𝑥 𝑠𝐿𝐼𝑁 + 0.2164 𝑥 𝑠𝑅𝑂𝑇] + 2) 

where sX = (X-mean[X])/(SD[X]), LIN = linear acceleration, ROT = rotational acceleration, HIC = head injury 

criterion, and GSI = Gadd Severity Index. The offset by 2 and scaling by 10 generates HITSP values greater than 

0 and in the numerical range of the other classic measures studied. A HITSP score of 63 or greater is reported to 

be an indication there is a 75% risk of a concussive injury occurring.[90]  More than a quarter (30%) of the 

studies[21, 37, 69, 71-74, 77, 81-83, 90] reported the HITSP. 

 

In 2013, a novel cumulative exposure metric, the Risk Weighted Cumulative Exposure (RWE) equation was 

developed[58] with four previously published analytical risk functions. The four different analytical risk functions 
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were the linear resultant acceleration,[16, 56] rotational resultant acceleration[51] and combined probability (linear 

and rotational) resultant accelerations.[57] These risk functions were utilised to elucidate individual player and 

team-based exposure to head impacts. The RWE equations comprise of aL as the measured peak linear 

acceleration, aR as the measured peak rotational acceleration, and nhits as the number of head impacts in a 

season for a given player. 

 

Risk function(s) Equation 

Linear12, 13 RWELinear  = ∑ 𝑹(𝒂𝐿)𝑖
𝑛ℎ𝑖𝑡𝑠
𝑖=1  

Rotational[51] RWERotational  = ∑ 𝑹(𝒂𝑅)𝑖
𝑛ℎ𝑖𝑡𝑠
𝑖=1  

Combined Probability[57] RWECP  = ∑ 𝑪𝑷(𝒂𝐿, 𝒂𝑅)𝑖
𝑛ℎ𝑖𝑡𝑠
𝑖=1  

 

Logistic regression equations and regression coefficients of the injury risk functions utilised in the prediction of 

injury, where α and β are the regression coefficients and x is the measured acceleration for the linear and 

rotational risk functions.[58]  

Logistic Regression equation Risk Function Regression coefficients 

𝑅[𝑎] =  
1

1 + 𝑒−𝛼+𝛽𝑥
 

Linear12, 13 α = -9.805, β = 0.0510 

Rotational[51] α = -12.531, β = 0.0020 

CP =  
1

1 + 𝑒−(𝛽0+𝛽1𝑎+𝛽2𝛼+𝛽3 𝑎𝛼
 Combined Probability (CP)[57] 

𝛽0 = -10.2, 𝛽1 = 0.0433, 𝛽2 = 0.000873, 

𝛽3 = -9.2E-07 

 

β0, β1, β2 and β3 are regression coefficients, a is the measured linear acceleration, and α is the measured 

rotational acceleration for the combined probability risk function. The three metrics provided as a result of these 

equations are for linear (RWELinear), rotational (RWERotational) and combined (linear and rotational) probability 

(RWECP). Only one study[58]  has reported the RWE 

 

In an attempt to delineate injury causation and to establish a meaningful injury criterion through the use of actual 

field data, Zhang et al.[12] proposed tolerance levels for human head injury based on input kinematics scaled from 

animal data and non-injurious volunteer test results. Injury predictors and injury levels were analysed based on 

resulting brain tissue responses and these were correlated with the site and occurrence of a concussion 

occurring. The calculated sheer stress around the brainstem region could be an injury predictor and statistical 

analyses were performed to establish a brain injury tolerance level. As a result of the analyses undertaken, and 

based on linear logistic regression analyses, it was reported[12] that the maximum resultant translational 

acceleration at the center of gravity (CG) of the head was estimated to be 66g, 82g and 106g for a 25%, 50% 

and 80% probability of sustaining an mTBI respectively.  
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For resultant rotational acceleration at the CG of the head this was estimated to be 4,600 rad/s2, 5,900 rad/s2 and 

7,900 rad/s2 for a 25%, 50% and 80% probability of sustaining an mTBI respectively. The estimated HIC15 

thresholds were 151, 240 and 369 for a 25%, 50% and 80% probability of sustaining an mTBI. These thresholds 

are considerably less than the HIC15 limit of 1,000 for sustaining a serious brain injury. If the head was exposed 

to a combined translational and rotational acceleration with an impact duration between 10 to 30 ms, the 

suggested tolerable reversible brain injury was 85g (translational acceleration), 6,000 rad/s2 (rotational 

acceleration) and HIC15 value of 240. It was reported that these values may change as more human data 

become available but to date no published updates of these values have been available. 

 

Although other variables have been proposed (Generalised Acceleration Model for Brain Injury Threshold 

(GAMBIT),[14, 64, 100] and Head Impact Power (HIP);[101] these were not utilised in any studies reporting head 

impacts in contact sport.  

Nearly all of the studies reviewed identified the number of impacts that were recorded, however 4% studies 

reported impacts in matches only, 23% recorded impacts for both match and practice activities, and 55% 

combined both match and practice activity impacts. The remaining 15% of studies reviewed reported on impacts 

above 90g or were reconstruction of impacts from video analysis The number of impacts ranged from 480 

impacts from 22 players in Pop Warner American football[85] to 486,594 impacts from 450 players in collegiate 

American football and ice hockey[89] (see Table 1).  

Over half (52%) of the studies[10, 12, 16, 22, 23, 27, 37, 49, 58, 61, 65, 66, 69-75, 79, 82-86, 91, 92] reported the impact biomechanics 

data as mean ± standard deviation (±SD). Some studies[23, 25, 58, 64, 73, 75, 82] (22%) also reported the head impacts 

as median, but not all[23, 73] (4%) included the interquartile ranges (IQR) for the data. Of the studies that reported 

the impact biomechanics by the median, only 7% reported the IQR. Most of the studies reporting the median also 

reported the 95th percentile of the impacts. Other data reporting methodologies utilised within the data sets 

reviewed were the median of the 95th percentile,[21] the 98th,[82, 90] 99th,[82, 90] and 99.5th[82] percentiles. Fourteen 

percent of studies also included lower and upper limits[61, 71, 72, 74] for the range of impacts,[24, 89] and the mean 

range[85] of the impacts. Less than a quarter of studies (23%) reported their impacts as x, y, z axis data,[22] 

+1SD,[52] Cumulative Distribution Functions (CDF),[54, 58] percentage of impacts,[21, 53] and the impact duration 

(ms).[16, 75, 76, 80, 81] In addition to the impact biomechanics being presented by various methodologies, 14% of 

studies[12, 27, 37, 69, 74, 79, 91] also incorporated impact tolerances and impact severity levels.  

 

3.3 Application of head impact thresholds to the rugby head impact data set 

By utilising data from a previously published study[27] that used the 10g impact threshold, data were re-extracted 

at differing impact thresholds from 10g to 30g. By adjusting the impact threshold (see Fig. 2) the number of 

impacts decreased as the impact threshold increased (see Table 2). There were significant differences observed 
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(p<0.05) for each of the different acceleration thresholds for the number of impacts reported, the mean, median 

and the 95th percentile when compared with the impacts at the 10g linear acceleration threshold (see Table 2). 

Based on the differences observed in this study, at the 14.4g threshold there could have been as many as 42% 

of the impacts recorded not being reported. As a result, studies[20, 23, 51, 58, 75-82, 85] using impact thresholds above 

10g may have removed 2,100 to 206,573 impacts. At the 30g impact threshold it can be estimated that 80 to 

85% of impacts were not reported.[85] Again, based on the differences observed in this study it is possible that 

each player in the Pop Warner study[85] may have experienced a cumulative total of 1,885 impacts above 10g. 

Although the impacts may not have been recorded, the players may well have been exposed to this number of 

impacts between 10g and 30g. The differences between impacts reported and the possible number of impacts 

(480 vs. 2,365) may result in an underestimation of the exposure risk to these players to subconcussive impacts. 

 

4. Discussion 

This study undertook to review the methods for reporting head impact data in sport and to outline the effect of 

various acceleration thresholds on the number of impacts reported. A consensus on a threshold for reporting 

data is important given the variation in conclusions that may be drawn if the same dataset is used with different 

thresholds, as identified by our application of the range of thresholds from prior literature applied to a New 

Zealand rugby union head impact data set.  A standard threshold for head impact data is important given 

possible monitoring of player head impact acceleration data in the hope of identifying a cumulative threshold for 

concussion from subconcussive impacts. 

The discussion surrounding subconcussive impacts has become popular.[32, 41, 43, 83, 102, 103] Initially the term 

subconcussive impact described an impact that did not result in severe, noticeable symptoms, especially loss of 

consciousness[102] However, recently, subconcussive is a term used to describe an asymptomatic non-

concussive impact to the head.[32, 41, 43, 83, 103] The issue relating to the effects of subconcussive impacts is 

controversial as researchers and clinicians are divided on the true effects.[30-32, 42, 45, 104] Some research[32, 104] has 

reported that these impacts have minimal effect on cognitive functions, while others[30, 31, 42, 45, 46] have reported 

these impacts to be detrimental to cerebral and cognitive functions. To date, there is a paucity of evidence to 

identify the impact acceleration that is adequate to produce a non-structural brain injury associated with the 

neuronal changes of concussion.[30] 

Animal models display metabolic changes associated with concussion, which may be similar in subconcussive 

impacts.[105] To research subconcussive impacts in isolation is challenging and there are, to date, no reports on 

animal models or other reliable methodologies that have been successful at identifying these impacts[105] Brain 

injury may occur from concussive events as well as from an accumulation of subconcussive impacts.[41] The 

effects of concussive events and multiple subconcussive impacts have been associated with long term 

progressive neuropathologies and cognitive deficits.[43, 106-108] Longitudinal impact monitoring at the level where 



13 

 

these subconcussive events are beginning to occur is important, and a standard threshold needs to be 

established. 

 

4.1  What threshold should be used to monitor head impacts? 

Impacts <10g of linear acceleration have been considered negligible in regards to impact biomechanical 

features.  The <10g impact threshold has been used in research to eliminate head accelerations from non-impact 

events such as jumping and running.[21, 55, 61] The inclusion of these non-impact events to head trauma make it 

difficult to distinguish between head impacts and voluntary head movement[109] and eliminating these will help 

identify the true extent of the number of impacts that do occur from sports participation. A suggestion for this may 

be to report the distribution of the impacts by the various resultant linear accelerations using a frequency analysis 

and reporting quartile ranges i.e. 25th and 75th interquartile range. This may assist in identifying where the most 

frequent resultant linear accelerations occur in the different sports. Consensus for the impact threshold will need 

to be established, and should be based on validation studies to determine the best impact threshold for various 

sports and injury outcomes.  Biomechanical modelling of impact forces and brain movement would be needed to 

identify likely impact thresholds for injury, as well as in-field validation studies using prospective monitoring of 

players during tackles and impacts with the ground. As there is no established criterion for reporting head impact 

biomechanics, and the majority of studies (42%)[21, 22, 24, 26, 27, 49, 52, 54, 61, 64-74]  reported the resultant linear 

acceleration threshold at 10g, then future studies should report all impacts above the 10g resultant linear 

acceleration threshold. 

 

4.2 What descriptive statistics should be used to report head impact biomechanics? 

There were a variety of descriptive statistics used in the reporting of head impact biomechanics in the reviewed 

studies which limits inter-study comparisons. Although more than half (52%) of the studies reviewed[10, 12, 16, 22, 23, 

27, 37, 49, 58, 61, 64-66, 69-75, 79, 82-86, 91, 92] reported their results by means and standard deviations, the use of these 

statistics may not accurately represent the true centre of the data. By reporting the mean value of the data set, 

this method is subject to extreme values (i.e. outliers) such as those in skewed datasets. The use of the mean is 

only appropriate if the dataset is normally distributed. In non-normal distributed data, the median is the most 

useful for describing the center of the data. Of the studies[23, 25, 58, 73, 75, 82] reviewed (22%) that reported the results 

by the median would more accurately have identified the center of the dataset. The New Zealand senior amateur 

head impact data were non-normally distributed (i.e. not symmetrical) therefore the use of descriptive statistics 

that can account for this skewness needed to be considered. To enable inter-study comparisons, and until a 

consensus is established for the reporting of head impact biomechanics, future studies should report the median 

[25th and 75th interquartile ranges] for all head impact biometrics. 
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4.3  What acceleration metrics should be used to monitor head impacts? 

It has been suggested that both resultant linear and rotational accelerations should be reported with head impact 

metrics.[110] As there is an improved correlation between impact biomechanics and the occurrence of a 

concussion, than when linear accelerations are reported alone.[12] Research[18, 111-114] suggests that the brain is 

more sensitive to rotational than linear accelerations. Rotational accelerations are reported[12, 115] to be correlated 

to the strain response of the brain and the primary mechanism for diffuse brain injury including concussion, 

contusion, axonal injuries and loss of consciousness.[111, 112, 116, 117] Linear accelerations are reported to result in 

the intracranial pressure response of the brain and be the primary mechanism for skull fractures and epidural 

haematomas.[115, 118] Reporting both linear and rotational accelerations should assist with identification of possible 

brain injury. 

More recently[57, 58] resultant linear and rotational acceleration results have been combined into a risk weighted 

exposure (RWE) metric. This metric can be beneficial for fully capturing the linear (RWELinear), rotational 

(RWERotational) and combined probability (from linear and rotational) (RWECP) of the risk of a concussion as it 

accounts for the frequency and severity of each player’s impacts. The HIC and GSI are the most frequently 

utilised head injury assessment functions in helmet and traffic restraint safety standards,[12, 119] however this was 

not reflected in the sport head impact studies reviewed. Based on the Wayne State University tolerance curve, [94] 

the HIC and GSI criteria are considered plausible ways of determining relative risk of severe head injury[120] but 

they do not account for the complex motion of the brain, or the contribution of resultant rotational acceleration to 

the head.[12, 14, 101] In particular the HIC only deals with frontal impacts and was not designed to be used for lateral 

impacts that can be found in head impact biomechanics[119] and arbitrarily defines an ‘unsafe pulse” within a ‘safe 

pulse” by discounting any data outside the two time points chosen for the calculation of the HIC value.[121] The 

GSI and HIC may be beneficial for evaluating acute head trauma due to single impacts but they are reportedly 

not beneficial for repeated impacts at lower acceleration magnitudes[119] such as those found in contact sports 

such as American football, rugby union and soccer.  The inclusion of the HIC and GSI by studies reporting on 

head impact biomechanics may be more historical thus providing the ability for inter-study comparisons with 

previous studies. However, as they are used to calculate multiple impacts and provide a nonsensical number, the 

value of these metrics are limited. The use of HIC and GSI in future studies, and the value that these metrics 

provide, needs to be standardised. Consensus is required on the incorporation of these and other biomechanical 

metrics into future research. 

 

4.4 Limitations in the use of accelerometery 

The use of accelerometers to record and assess movement is not new to the scientific community.[122, 123] There 

have been some inter-study and international comparability limitations reported for use of accelerometers to 

report physical activity.[62] The identified limitations for physical activity accelerometers may be identical to areas 
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now being faced by studies reporting the biomechanics of impacts to the head. The majority of studies reporting 

head impact biomechanics have utilised HITS,[20-24, 32, 37, 42, 49, 51-54, 57, 58, 61, 65-83, 85, 86, 88-91] or a variant.[26] More 

recently, an electronic mouthguard has been used to assess head impacts in rugby union.[27]  

The issues identified with the use of accelerometers for physical activity[62] include affordability of the 

accelerometers,[62] and the administration burden[62] to the participants and researcher(s) given post data 

collection analysis. The choice of accelerator brand,[124] generation[125] and firmware version,[126] wearing 

position[127] based on the sports code requirements (i.e. helmet mounted vs. headband mounted vs. mouthguard 

embedded vs. patch), specifics of the research being undertaken such as the epoch length[128, 129] (match vs. 

training vs. combined), data imputation methods,[130] dealing with spurious data[131] and the reintegration of 

smaller epochs into larger epochs[132] are all considerations for use of accelerometers. In addition to the issues 

identified, there are technological developments, emerging methodological questions and a lack of academic 

consensus that may also hinder the development of uniformity in the utilisation of accelerometers[62] for recording 

head impact biomechanics. 

In comparing the New Zealand rugby union data with data collected with the use of the HITS, it must be noted 

that these are different impact telemetry systems. The mouthguard is reported to have a 10% error for linear and 

rotation acceleration and for angular velocity with an average offset of 2° for azimuth and elevation impact 

location.[133, 134] Although the correlation of the AIM mouthguard with laboratory head-forms is good, the impact 

measurements should be assumed to have some form of error that is dependent on impact conditions and the 

measure of interest and the variability tested.[89, 135] It is unlikely that the mouthguard was tested under all of the 

activities seen in rugby union matches such as the rucks, mauls, lineouts and scrum situations. How these rugby 

activities correlate to the laboratory conditions is unknown.  .Although the majority of the impact biomechanics 

studies reported in this review are helmet based telemetry systems, there is a paucity of studies reporting on 

head impact biomechanics with other systems such as the mouthguard and headband. In addition there are no 

published studies comparing the HITS with other forms of impact telemetry systems such as the X2Biosystems 

All-In-Mouth (AIM) mouthguard. 

A final consideration to the use of accelerometers in recording impacts is the need for concurrent video-analysis 

to enable comparison and verification of the impacts. This would enable the identification of non-impact activities 

where an impact has been recorded such as post-try celebrations, dropping equipment onto the ground, or other 

activities where the equipment may record an impact. In the case of the New Zealand rugby union data, only 

impacts that occurred in the tackle with the player standing were able to be verified.[27] The percentage of 

impacts that were identified at the 10g inclusion limit, that were able to be visualised by video review and 

analysis, varied from 65% to 85% of the total impacts recorded per match.[27] 

 

4.5  What are the long term implications of repeated head impacts? 
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The use of impact tolerance and impact severity level data may be important if a risk assessment is undertaken 

for possible long term implications from repetitive head impacts (RHI). Recently in a small sample[66] of collegiate 

players with no reported concussions after a season of American football, there were white matter changes that 

correlated with multiple head impact measures. Participants with more than 30-40 RHI’s with peak rotational 

accelerations >4,500 radians per second per second (rad/s2) per season (r=0.91; p<0.001), and more than 10-15 

RHI’s >6,000 rad/s2 (r=0.81; p<0.001), were significantly correlated with post-season white matter changes.[66] 

These changes post season imply a relationship between the number of RHIs that occur over a season of 

American football and white matter injury, despite no clinically evident concussion being recorded.[66]  

The inclusion of impact tolerances and impact severity levels may assist with the identification of players at risk 

of possible long term injuries. Impact tolerance may also act as an indicator of when to rest players if they are 

exposed to RHIs above >4,500 rad/s2 and >6,000 rad/s2. This type of information will assist in formulating a 

detailed understanding of the exposure and mechanism of injury of concussion.[53, 136] Further research is 

required to evaluate the injury tolerance of concussive type injuries, to develop interventions to reduce the 

likelihood of any concussive type injuries, and to develop exposure durations and stand down periods to 

establish a broader understanding of the potential role of subconcussive events and long term health.[53]  

 

5. Conclusion 

This study identified the methodological differences in the threshold limits of impacts to the head as a result of 

participation in contact sports. Of the 34 studies, 39% reported impacts at the 10g impact threshold while 22% of 

studies used the 14.4g impact threshold. Resultant linear accelerations were most frequently reported (91%) 

while 76% reported resultant rotational accelerations. Nearly three-quarters (74%) of studies reported both 

resultant linear and rotational accelerations. Impact data were most frequently (52%) reported as mean ± 

standard deviation (±SD). Some (10%) studies reported the head impact data as median, but not all (4%) 

included the interquartile ranges (IQR) for these data.  

The influence of head impact thresholds was shown using head impact data obtained from 38 senior amateur 

rugby union players during 19 matches in New Zealand. Application of the varied impact thresholds resulted in 

20,687 impacts >10g; 11,459 (44.6% less), impacts >15g; and 4,024 (80.5% less) impacts >30g. 

Given head impacts are likely to cause concussive injury, and the number of head impacts may be related to a 

potential concussion threshold (i.e. a cumulative threshold), the number and severity of head impacts should be 

monitored in players.  However, impacts can be measured with several technologies (e.g. instrumented behind 

the ear patches, mouthguards, head gear), and thresholds have differed for reporting impact data in contact and 

collision sports. Consensus is therefore required to identify the reporting modalities (e.g. linear threshold, 

descriptive calculations), utilised in future impact studies to enable between study comparisons. Until in-field 
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validation studies are completed, it is recommended that data should be reported as mean ± standard deviation, 

median and interquartile ranges using the 10g impact threshold. 
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TABLES 

Table 1:  MOOSE scores, data acquisition impact thresholds, study groups, sporting codes and duration, 

instrumented equipment, participant numbers, impacts recorded for total and per player, and metrics 

for reporting data. 

Table 2: Differences in the resultant linear (PLA(g)) and rotational (PRA(rad/s2)) accelerations, head impact 

criterion (15ms) (HIC15) and Gadd severity index (GSI) at different impact thresholds by the mean and 

standard deviation (±SD), median [25th to 75th percentile] and 95th percentile for senior amateur rugby 

union players. 

FIGURES: 

Figure 1: Flow of identification, screening, eligibility and study inclusion of previously published studies. 

Figure 2: Percentage of impacts removed when applying different data impact threshold limits compared with 

original 10g threshold limit for the New Zealand data set of head impacts to senior amateur rugby 

union players for one season. 
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Table 1: MOOSE scores, data  acquisition impact thresholds, study groups, sporting codes and duration, instrumented equipment, participant numbers, impacts recorded for total and per 
player and metrics for reporting data 

Study 
MOOSE[63] 

Score 

Data  
acquisition 

Limit (g) 

Study  
group 

Sport, No.  
seasons 

No 
Participants 

Impacts  
total 

Impacts per player  

Raw data Derived variables Reporting statistics 

PLA(g) PRA(rad/s2) HIC15 HIC36 GSI HITsp Mean (SD) Median IQR 95% Other 

Hernandez et al.[64] 4/6 (67%) 7; 10 Coll; P Am F, MM, B   2 concussions; T: 513 Y Y      Y Y   

Brolinson et al.[65] 5/6 (83%) 10 Coll Am F, 2 52 11,604 T; 223a Y 
     

Y 
    

Bazarian et al.[66] 5/6 (83%) 10 Coll Am F, 1 10 9,769 T; 977a Y Y 
    

Y 
    

Crisco et al.[21] 5/6 (83%) 10 Coll Am F, 3 314 286,636 T: 420;b P: 250;b M: 128b Y Y 
   

Y 
 

Y 
 

Y Y 

Crisco et al.[67] 5/6 (83%) 10 Coll Am F, 2 254 184,358 T: 726a Y Y 
   

Y 
   

y 
 

Daniel et al.[54] 5/6 (83%) 10 Youth Am F, 1 7 748 T: 107; P: 63; M: 44 Y Y 
     

Y 
 

Y Y 

Duma et al.[49] 5/6 (83%) 10 Coll Am F, 1 38 3,312 T: 87a Y 
 

Y 
 

Y 
 

Y 
    

Funk et al.[68] 5/6 (83%) 10 Coll Am F, 4  98 37,128 T: 379a Y 
 

Y 
        

Hanlon et al.[26] 5/6 (83%) 10H Youth Soccer, P 24 47 H 20 NH N/S Y Y Y 
 

Y 
      

Harpham et al.[69] 5/6 (83%) 10 Coll Am F, 1 38 N/S N/S Y Y 
   

Y Y 
    

King et al.[27] 5/6 (83%) 10M Snr Amat RU, 1 38 20,687 T: 564; M: 77 Y Y 
    

Y 
    

Mihalik et al.[61] 5/6 (83%) 10 Coll Am F, 2 72 57,024 T: 9,504a Y 
     

Y 
   

Y 

Mihalik et al.[70] 5/6 (83%) 10 Youth IH, 1 37 7,770 T: 1,945a Y Y 
    

Y 
   

Y 

Mihalik et al.[71] 5/6 (83%) 10 Youth IH, 2 52 12,253 T: 223;b P: 83;b M: 24b Y Y 
   

Y Y 
  

Y Y 

Mihalik et al. [72] 5/6 (83%) 10 Youth IH, 1 16 4,608 T: 288a Y Y 
   

Y Y 
   

Y 

Munce et al.[73] 5/6 (83%) 10 Youth Am F, 1 22 6,183 T: 281a Y Y 
   

Y Y Y 
 

Y 
 

Ocwieja et al.[74] 5/6 (83%) 10 Coll Am F, 1 46 7,992 T: 174a Y Y 
   

Y Y 
   

Y 

Reed et al.[24] 5/6 (83%) 10 Youth IH, 1 13 1,821 T: 140; M: 5 Y Y Y Y 
      

Y 

Rowson et al.[22] 5/6 (83%) 10 Coll Am F, 1 10 1,712 T: 171a Y Y 
    

Y 
   

Y 

Schnebel et al.[52] 5/6 (83%) 
10 Coll Am F, 1 40 54,154 T: 1,354a Y 

         
Y 

10 HS Am F, 1 16 8,326 T: 520a Y 
         

Y 

Beckwith et al.[75, 76] 5/6 (83%) 14.4 Coll / HS Am F, 6 95 161,732 T: 1,702a Y Y Y Y 
      

Y 

Broglio et al.[77] 5/6 (83%) 14.4 HS Am F, 1 42 32,510 T: 744; P: 11;c M: 24 Y Y 
   

Y 
     

Cobb et al.[20] 5/6 (83%) 14.4 Youth Am F, 1 50 11,978 T: 240; P: 10; M: 11 Y Y 
     

Y 
 

Y Y 

Crisco et al.[53] 5/6 (83%) 14.4 Coll Am F, 1 188 3,878 T: 21;a P: 6; M: 14 
          

Y 

Daniel et al.[78] 5/6 (83%) 14.4 Youth Am F, 1 17 4,678 T: 275;a P: 163; M: 112 Y Y 
     

Y 
 

Y Y 

Rowson et al.[51] 5/6 (83%) 14.4 Coll Am F, 2 314 300,977 T: 959a 

 
Y 

         
Talavage et al.[42] 5/6 (83%) 14.4 HS Am F, 1 21 15,264 T: 727a 

           
Urban et al.[58] 5/6 (83%) 14.4 HS Am F, 1 40 16,502 T: 413a Y Y 

    
Y Y Y Y 

 
Young et al.[23] 5/6 (83%) 14.4 Youth Am F, 1 19 3,059 T: 161; P: 95; M: 65 Y Y 

    
Y Y 

 
Y Y 

Broglio et al.[79] 5/6 (83%) 15 HS Am F, 3 78 54,247 T: 695a Y Y 
    

Y 
   

Y 

Broglio et al.[80] 5/6 (83%) 15 HS Am F, 1 35 19,224 T: 549;a P: 9; M: 25 Y Y 
        

Y 

Broglio et al.[37, 81] 5/6 (83%) 15 HS Am F, 4 95 101,994 T: 652 Y Y 
   

Y Y 
   

Y 

Eckner et al.[82] 5/6 (83%) 15 HS Am F, 2 20 30,298 T: 1,515a Y Y 
   

Y Y Y Y Y Y 

Martini et al.[83] 5/6 (83%) 15 HS Am F, 2 83 35,620 T: 429a Y Y 
   

Y Y 
    

Wilcox et al.[25]  5/6 (83%) 20 Coll IH M/F,3 91 37,411 T: 19,980d / 17,531e Y Y    Y  Y Y Y Y 

Wilcox et al.[84]  5/6 (83%) 20 Coll IH M/F,1/3 54 616 T: 270d / 242 Y Y    Y Y     

Wong et al.[85] 5/6 (83%) 30 Youth Am F, 1 22 480 T: 22;a P: 4; M: 2 Y 
     

Y 
    

Gysland et al.[32] 5/6 (83%) <60 >90 Coll Am F, 1 46 N/S T: 1,177; 12 >90g Y 
         

Y 

McCaffrey et al.[86] 5/6 (83%) <60 >90 Coll Am F, 1 43 N/S N/S Y 
     

Y 
   

Y 

Fréchède et al.[10] A 4/6 (67%) Recon Prof AFL / RU, 3  - - N/S 
 

Y Y 
   

Y 
   

Y 

McIntosh et al.[87] A 4/6 (67%) Recon Prof AFL, 3 - - N/S Y Y 
        

Y 

Pellman et al.[16] A 4/6 (67%) Recon Prof Am F, 5 - - N/S Y Y Y 
   

Y 
    

Zhang et al.[12] A 4/6 (67%) Recon Lab - - - - Y Y Y 
   

Y 
   

Y 

Breedlove et al.[88] A 4/6 (67%) N/S HS Am F, 2 24 N/S N/S Y Y 
     

Y 
  

Y 

Duhaime et al.[89] A 4/6 (67%) N/S Coll Am F, IH, 4 450 486,594 T: 1,081a Y Y 
         

Greenwald et al.[90] A 4/6 (67%) N/S Coll / HS Am F, 3 449 
 

17 concussions only Y Y Y 
  

Y 
   

Y 
 

Guskiewicz et al.[91] A 4/6 (67%) N/S Coll Am F, 2 88 104,714 T: 1,190a Y 
     

Y 
    

Rowson et al.[57] A 4/6 (67%) N/S Coll Am F  N/S 63,011 Combined data  Y Y 
        

Y 

Wilcox et al.[92]  4/6 (67%) N/S Coll IH F, 3 58  9 concussions Y Y    Y Y     

Mean study quality     4.8 ±0.4 (79.6% ±7.0)     Percentage of studies 91.5 92.0 76.6 76.0 21.3 18.0 4.3 4.0 6.4 4.0  

Instrumented equipment used is helmet unless the data acquisition limit is reconstructed = Recon, or superscript M = Mouthguard or H = Headband. Coll = Collegiate; HS = High School; Snr Amat = Senior Amateur; Prof = Professional; Am F = American Football; IH = Ice 
Hockey; RU = Rugby Union; AFL = Australian Football League; MM = Mixed martial Arts; B = Boxing; T = Total impacts; P = Practice Impacts; M = Match impacts; a = calculated number of impacts; b = Median results; c = contact practice; d = male; e = female; H = Header; 
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NH = non-header; N/S = Not Stated; PLA(g) = Peak Linear Acceleration; PRA(rad/s2) = Peak Rotational Accelerations in radians/second/second (rad/s2); HIC15 = Head Impact Criterion 15 milliseconds; HIC36 = Head Impact Criterion 36 milliseconds; GSI = Gadd Severity 
Index; HITsp = Head Impact Telemetry severity profile; SD = Standard Deviation; IQR = Inter-Quartile Range; 95% = 95th Percentile. 
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Table 2:  Differences in the resultant linear (PLA(g)) and rotational (PRA(rad/s2)) accelerations, head impact criterion (15ms) (HIC15) and Gadd severity index (GSI) at different impact 

threshold limits by the mean and standard deviation (±SD), median [25th to 75th percentile] and 95th percentile for the New Zealand senior amateur rugby union total player dataset. 

Data  
acquisition  

Resultant Linear Accelerations (PLA(g)) Resultant Rotational Accelerations (PRA(rad/s2)) Head Impact Criterion 15ms (HIC15) Gadd Severity Index (GSI) 

impact 
threshold (g) 

No of  
impacts 

Mean ±SD Median [25th-75th] 95% Mean ±SD Median [25th-75th] 95% Mean ±SD Median [25th-75th] 95% Mean ±SD Median [25th-75th] 95% 

10 20,687 22 ±16 16 [12-26] 53 3,903 ±3,949 2,625 [1,324-4,934] 12,204 32 ±99 9 [5-25] 128 48 ±118 15 [8-398] 192 

11 17,747 24 ±17 18 [13-29] 56 4,255 ±4,096 2,898 [1,549-5,389] 12,945 37 ±106 11 [6-30] 145 55 ±126 19 [10-47] 218 

12 15,454 26 ±17 20 [15-31] 59 4,603 ±4,214 3,181 [1,781-5,860] 13,581 42 ±112 14 [7-35] 160 62 ±134 23 [12-55] 241 

13 13,825 28 ±17 22 [16-32] 62 4,858 ±4,293 3,423 [1,967-6,263] 13,948 46 ±118 17 [9-40] 176 69 ±140 27 [14-62] 262 

14 12,531 29 ±18 24 [18-34] 64 5,079 ±4,368 3,589 [2,123-6,596] 14,325 51 ±123 19 [10-44] 188 75 ±146 31 [17-69] 278 

15 11,459 31 ±18 25 [19-35] 65 5,286 ±4,438 3,774 [2,263-6,908] 14,647 55 ±128 22 [12-49] 205 80 ±151 34 [19-76] 297 

16 10,570 32 ±18 26 [20-36] 67 5,478 ±4,510 3,936 [2,400-7,180] 14,994 59 ±133 24 [14-53] 215 86 ±156 38 [21-82] 318 

17 9,784 33 ±18 27 [21-38] 68 5,655 ±4,565 4,082 [2,538-7,394] 15,235 63 ±137 27 [15-57] 228 92 ±161 41 [24-88] 331 

18 9,095 34 ±18 28 [22-39] 70 5,799 ±4,610 4,173 [2,644-7,567] 15,486 67 ±141 29 [17-62] 241 97 ±165 45 [27-95] 348 

19 8,500 35 ±19 29 [23-40] 71 5,939 ±4,662 4,265 [2,731-7,744] 15,823 70 ±145 32 [18-66] 253 103 ±169 49 [29-102] 364 

20 7,934 36 ±19 30 [24-41] 74 6,072 ±4,716 4,357 [2,810-7,931] 16,256 74 ±150 34 [20-70] 263 109 ±174 53 [31-109] 374 

21 7,430 37 ±19 31 [25-42] 76 6,206 ±4,757 4,483 [2,896-8,158] 16,470 79 ±154 37 [22-75] 275 115 ±178 57 [34-114] 391 

22 6,938 39 ±19 32 [26-44] 77 6,363 ±4,801 4,595 [2,992-8,426] 16,806 83 ±158 40 [24-80] 291 121 ±183 62 [37-121] 415 

23 6,463 40 ±19 33 [27-45] 80 6,519 ±4,859 4,722 [3,096-8,628] 17,073 88 ±163 43 [26-85] 302 127 ±188 67 [40-129] 444 

24 6,060 41 ±19 34 [28-46] 82 6,656 ±4,906 4,835 [3,201-8,798] 17,282 92 ±167 46 [28-90] 318 134±192 71 [43-135] 466 

25 5,666 42 ±20 35 [29-47] 83 6,819 ±4,952 4,965 [3,305-9,012] 17,435 97 ±172 49 [31-95] 337 141 ±197 76 [47-144] 485 

26 5,275 43 ±20 36 [30-48] 84 6,977 ±4,986 5,101 [3,428-9,297] 17,622 102 ±177 53 [33-101] 357 148 ±202 81 [50-152] 512 

27 4,955 44 ±20 37 [31-49] 87 7,107 ±5,036 5,210 [3,495-9,459] 17,844 107 ±181 57 [35-107] 389 155 ±206 86 [54-162] 536 

28 4,642 45 ±20 39 [32-51] 88 7,261 ±5,079 5,339 [3,607-9,704] 18,131 113 ±186 60 [38-114] 396 163 ±211 93 [58-173] 557 

29 4,305 47 ±20 40 [33-52] 91 7,448 ±5,130 5,492 [3,778-9,917] 18,221 119 ±192 65 [41-123] 407 172 ±217 99 [64-186] 583 

30 4,024 48 ±20 41 [34-54] 92 7,597 ±5,187 5,624 [3,875-10,129] 18,436 125 ±197 69 [44-131] 420 180±221 106 [68-196] 606 

PLA (g) = peak linear acceleration; PRA (rad/s2) = peak rotational acceleration in radians/second/second (rad/s2); Significant difference (p<0.05) than: (a) = 10g. 
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Figure 1: Flow of identification, screening, eligibility and study inclusion of published studies. 
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Figure 2:  Percentage of impacts removed when applying different data impact threshold limits compared with 

original 10g threshold limit for the New Zealand data set of head impacts to senior amateur rugby 

union players for one season. 
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