13 research outputs found

    The Air Microwave Yield (AMY) experiment - A laboratory measurement of the microwave emission from extensive air showers

    Full text link
    The AMY experiment aims to measure the microwave bremsstrahlung radiation (MBR) emitted by air-showers secondary electrons accelerating in collisions with neutral molecules of the atmosphere. The measurements are performed using a beam of 510 MeV electrons at the Beam Test Facility (BTF) of Frascati INFN National Laboratories. The goal of the AMY experiment is to measure in laboratory conditions the yield and the spectrum of the GHz emission in the frequency range between 1 and 20 GHz. The final purpose is to characterise the process to be used in a next generation detectors of ultra-high energy cosmic rays. A description of the experimental setup and the first results are presented.Comment: 3 pages -- EPS-HEP'13 European Physical Society Conference on High Energy Physics (July, 18-24, 2013) at Stockholm, Swede

    The observation of lightning-related events with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory, designed to detect ultra-high energy cosmic rays, can be a valid instrument at the ground to study phenomena related to the atmospheric electricity. The fluorescence detector is a powerful instrument to observe ELVES thanks to its excellent time resolution, while peculiar events with a large number of triggered stations have been recorded by the surface detector. The characteristic signal of these events lasts more than 10 mu s, about two orders of magnitude more than the duration of a signal produced by a cosmic muon. Moreover, each of these events has at least one station with a signal dominated by a high-frequency noise that could be related with a lightning-induced signal. Stations with a long-lasting signal are arranged in a disk shape. There are "big" events characterized by a radius of about 6 km and few "small" events with a radius of about 2-3 km. The signal, generated by a source very close to the ground, first reaches the innermost stations and then spreads outwards. In the "big" events, a lack of signal in some of the central stations was observed. Further studies and checks are in progress to understand the origin of the lack of signal and what mechanisms occurring during the lightning evolution may provide for electric fields capable of generating and accelerating particles that can produce Cherenkov light in the stations of the surface detector

    Aerosol Optical Depth from MODIS satellite data above the Pierre Auger Observatory

    Get PDF
    Aerosol optical depth can be retrieved from measurements performed by Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument. The MODIS satellite system includes two polar satellites, Terra and Aqua. Each of them flies over the Pierre Auger Observatory once a day, providing two measurements of aerosols per day and covering the whole area of the Observatory. MODIS aerosol data products have been generated by three dedicated algorithms over bright and dark land and over ocean surface. We choose the Deep Blue algorithm data to investigate the distribution of aerosols over the Observatory, as this algorithm is the most appropriate one for semi-arid land of the Pierre Auger Observatory. This data algorithm allows us to obtain aerosol optical depth values for the investigated region, and to build cloud-free aerosol maps with a horizontal resolution 0.1 degrees x0.1 degrees. Since a sufficient number of measurements was obtained only for Loma Amarilla and Coihueco fluorescence detector (FD) sites of the Pierre Auger Observatory, a more detailed analysis of aerosol distributions is provided for these sites. Aerosols over these FD sites are generally distributed in a similar way each year, but some anomalies are also observed. These anomalies in aerosol distributions appear mainly due to some transient events, such as volcanic ash clouds, fires etc. We conclude that the Deep Blue MODIS algorithm provides more realistic aerosol optical depth values than other available algorithms

    Analysis of ELVES at the Pierre Auger Observatory

    Get PDF
    In the last six years, the Fluorescence Detector (FD) of the Auger Observatory has been exploited for the study of transient luminous events occuring high above thunderstorms at large distances (250 to more than 1000 km) from the Observatory. The first ELVES candidate was discovered during a night shift in 2005, and further studies based on auxiliary subtriggers allowed to modify the third level trigger of the observatory in order to acquire them with reasonable efficiency. This report aims to briefly review the studies underway on the >4000 ELVES triggers harvested in the years 2013-18 by the Observatory

    UHECR arrival directions in the latest data from the original Auger and TA surface detectors and nearby galaxies

    Get PDF
    The distribution of ultra-high-energy cosmic-ray arrival directions appears to be nearly isotropic except for a dipole moment of order 6×(E/10 EeV)6 \times (E/10~\mathrm{EeV}) per cent. Nonetheless, at the highest energies, as the number of possible candidate sources within the propagation horizon and the magnetic deflections both shrink, smaller-scale anisotropies might be expected to emerge. On the other hand, the flux suppression reduces the statistics available for searching for such anisotropies. In this work, we consider two different lists of candidate sources: a sample of nearby starburst galaxies and the 2MRS catalog tracing stellar mass within 250 Mpc. We combine surface-detector data collected at the Pierre Auger Observatory until 2020 and the Telescope Array until 2019, and use them to test models in which UHECRs comprise an isotropic background and a foreground originating from the candidate sources and randomly deflected by magnetic fields. The free parameters of these models are the energy threshold, the signal fraction, and the search angular scale. We find a correlation between the arrival directions of 11.8%3.1%+5.0%11.8\%_{-3.1\%}^{+5.0\%} of cosmic rays detected with E38 EeVE \ge 38~\mathrm{EeV} by Auger or with E49 EeVE \gtrsim 49~\mathrm{EeV} by TA and the position of nearby starburst galaxies on a 15.53.2+5.3{15.5^\circ}_{-3.2^\circ}^{+5.3^\circ} angular scale, with a 4.2σ post-trial significance, as well as a weaker correlation with the overall galaxy distribution

    UHECR arrival directions in the latest data from the original Auger and TA surface detectors and nearby galaxies

    Get PDF
    The distribution of ultra-high-energy cosmic-ray arrival directions appears to be nearly isotropic except for a dipole moment of order 6×(E/10 EeV)6 \times (E/10~\mathrm{EeV}) per cent. Nonetheless, at the highest energies, as the number of possible candidate sources within the propagation horizon and the magnetic deflections both shrink, smaller-scale anisotropies might be expected to emerge. On the other hand, the flux suppression reduces the statistics available for searching for such anisotropies. In this work, we consider two different lists of candidate sources: a sample of nearby starburst galaxies and the 2MRS catalog tracing stellar mass within 250 Mpc. We combine surface-detector data collected at the Pierre Auger Observatory until 2020 and the Telescope Array until 2019, and use them to test models in which UHECRs comprise an isotropic background and a foreground originating from the candidate sources and randomly deflected by magnetic fields. The free parameters of these models are the energy threshold, the signal fraction, and the search angular scale. We find a correlation between the arrival directions of 11.8%3.1%+5.0%11.8\%_{-3.1\%}^{+5.0\%} of cosmic rays detected with E38 EeVE \ge 38~\mathrm{EeV} by Auger or with E49 EeVE \gtrsim 49~\mathrm{EeV} by TA and the position of nearby starburst galaxies on a 15.53.2+5.3{15.5^\circ}_{-3.2^\circ}^{+5.3^\circ} angular scale, with a 4.2σ post-trial significance, as well as a weaker correlation with the overall galaxy distribution

    Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory

    Get PDF
    Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E > = 6×1019 eV by analyzing cosmic rays with energies above E > = 5×1018 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources

    A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

    Get PDF
    Contains fulltext : 93734.pdf (publisher's version ) (Closed access) Contains fulltext : 93734-1.pdf (preprint version ) (Open Access

    The use of aerosol data in Auger Fluorescence Detector analysis

    No full text
    The Pierre Auger Observatory's Fluorescence Detector (FD) consists of 27 telescopes arranged in four sites around the perimeter of the 3000 square kilometre Surface Detector (SD). Cosmic ray extensive air showers are viewed via the nitrogen fluorescence light they induce in the atmosphere. Careful treatment of light attenuation processes must be made, especially given that some showers are viewed at distances in excess of 30 km. Of particular importance is the attenuation due to scattering by aerosol particles, a challenging topic given that aerosol concentrations can vary on time-scales of hours. At the Auger Observatory, the vertical distribution of aerosols is measured hourly with a series of bi-static lidar systems (consisting of central laser facilities and each of the FD sites), and three times per night with a Raman lidar system. In this contribution we describe the use of aerosol profiles in the analysis of air shower data, in particular in the estimation of the cosmic ray primary energy, and the depth of shower maximum, X-max. We also demonstrate how statistical and systematic uncertainties in the aerosol concentrations propagate through to a contribution to energy and X-max uncertainties

    Publisher's Note: Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory [Phys. Rev. D 84, 122005 (2011)]

    No full text
    corecore