120 research outputs found

    Long-range dipolar order and dispersion forces in polar liquids

    Get PDF
    Complex solvation phenomena, such as specific ion effects, occur in polar liquids. Interpretation of these effects in terms of structure and dispersion forces will lead to a greater understanding of solvation. Herein, using molecular dynamics, we probe the structure of polar liquids through specific dipolar pair correlation functions that contribute to the potential of mean force that is "felt" between thermally rotating dipole moments. It is shown that unique dipolar order exists at separations at least up to 20 Å for all liquids studied. When the structural order is compared with a dipolar dispersion force that arises from local co-operative enhancement of dipole moments, a strong agreement is found. Lifshitz theory of dispersion forces was compared with the structural order, where the theory is validated for all liquids that do not have significant local dipole correlations. For liquids that do have significant local dipole correlations, specifically liquid water, Lifshitz theory underestimates the dispersion force by a factor of 5-10, demonstrating that the force that leads to the increased structure in liquid water is missed by Lifshitz theory of van der Waals forces. We apply similar correlation functions to an ionic aqueous system, where long-range order between water's dipole moment and a single chloride ion is found to exist at 20 Å of separation, revealing a long-range perturbation of water's structure by an ion. Furthermore, we found that waters within the 1st, 2nd, and 3rd solvation shells of a chloride ion exhibit significantly enhanced dipolar interactions, particularly with waters at larger distances of separation. Our results provide a link between structures, dispersion forces, and specific ion effects, which may lead to a more robust understanding of solvation

    Rubisco activities, properties, and regulation in three different C4 grasses under drought

    Get PDF
    In C4 plants, water deficit may decrease photosynthetic CO2 assimilation independently of changes in stomatal conductance, suggesting decreased turnover by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The activity and biochemistry of Rubisco was studied in three different C4 grasses: Paspalum dilatatum, Cynodon dactylon, and Zoysia japonica. The objectives were to characterize the C4 Rubisco in these species and to identify factors associated with decreased photosynthetic rates caused by drought. Rubisco isolated from each of the three C4 grasses was characterized by smaller specificity factors (SC/O), larger Michaelis–Menten constants for CO2 (Kc) and O2 (Ko), and larger maximum carboxylation velocities (Vc) than Rubisco from wheat, which can be rationalized in terms of the CO2-rich environment of C4 Rubisco in the bundle sheath. During leaf dehydration the quantity and maximum activity of Rubisco remained unchanged but the initial and total activities declined slightly, possibly due to increased inhibition. Tight-binding inhibitors were present in the light but were more abundant in the dark, especially in Z. japonica, and increased in quantity with drought stress. The inhibitor from darkened leaves of Z. japonica was identified as 2-carboxyarabinitol-1-phosphate (CA1P). Consistent with the presence of CA1P, the total activity of Rubisco was decreased after 12 h darkness in Z. japonica. Ribulose-1,5-bisphosphate (RuBP) in the leaves decreased with drought stress, to quantities approximating those of Rubisco catalytic sites. The magnitude of the decrease in RuBP suggested that, at least in C. dactylon and Z. japonica, it could contribute to the drought-induced decrease in photosynthesis

    Genetic improvement of tomato by targeted control of fruit softening

    Get PDF
    Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase

    Stabilizing Dipolar Interactions Drive Specific Molecular Structure at the Water Liquid-Vapor Interface

    No full text
    Using molecular dynamics simulations we probe the structure and interactions at the water liquid-vapor (LV) interface. In the interfacial region, strong ordering of dipole moments is observed, where water molecules exhibit "frustrated" orientations. By selectively analyzing the dipolar potential of mean force between these frustrated molecules and other molecules, we find a significant enhancement of dipolar interactions across the interfacial region. This interaction is derived in terms of a component of the surface tension, with a temperature-dependent magnitude of Ôê=Ôê20 mN m-1, representing a stabilizing interaction at the interface. This stabilization has the same magnitude, but opposite sign, to the surface tension of alkanes and short-chain alcohols. Our results highlight a mechanism by which interfacial waters recover lost free energy from an absence of van der Waals interactions in the vapor region and likely explains the driving force for specific water structure at the LV interface

    In Situ Characterization of Protein Corona Formation on Silica Microparticles Using Confocal Laser Scanning Microscopy Combined with Microfluidics

    Get PDF
    In biological fluids, proteins bind to particles, forming so-called protein coronas. Such adsorbed protein layers significantly influence the biological interactions of particles, both in vitro and in vivo. The adsorbed protein layer is generally described as a two-component system comprising "hard" and "soft" protein coronas. However, a comprehensive picture regarding the protein corona structure is lacking. Herein, we introduce an experimental approach that allows for in situ monitoring of protein adsorption onto silica microparticles. The technique, which mimics flow in vascularized tumors, combines confocal laser scanning microscopy with microfluidics and allows the study of the time-evolution of protein corona formation. Our results show that protein corona formation is kinetically divided into three different phases: phase 1, proteins irreversibly and directly bound (under physiologically relevant conditions) to the particle surface; phase 2, irreversibly bound proteins interacting with preadsorbed proteins, and phase 3, reversibly bound "soft" protein corona proteins. Additionally, we investigate particle-protein interactions on low-fouling zwitterionic-coated particles where the adsorption of irreversibly bound proteins does not occur, and on such particles, only a "soft" protein corona is formed. The reported approach offers the potential to define new state-of-the art procedures for kinetics and protein fouling experiments
    corecore