158 research outputs found

    Lateral mixing of the Mediterranean Water in the eastern North Atlantic

    Get PDF
    Analysis of the salinity distribution along three quasi-meridional hydrographic sections in the eastern North Atlantic shows that different mesoscale processes act to mix the Mediterranean Water with the adjacent water masses. In the region of transition with the Antarctic Intermediate Water in the south, the salt transport by the meddies seems to account for most of the observed lateral diffusive exchanges at the large scale. In the north these exchanges are contributed to by parcels of both Mediterranean Water and Subarctic Intermediate Water travelling on average in opposite directions. Also in the north but at a deeper level, transition with the Labrador Sea Water is characterized by a pronounced thermohaline front. Coherent mesoscale structures carrying deep Mediterranean Water escape northward from that front. A simplified unidirectional mixing model is used diagnostically to relate the basic parameters associated with the mesoscale structures to those characterizing lateral mixing at the large scale

    Stirring and mixing of thermohaline anomalies

    Get PDF
    Data from the Tourbillon Experiment in the eastern North Atlantic indicate clearly the stirring of waters with contrasting thermohaline properties by a mesoscale eddy, and the ensuing mixture which occurred. The observed features are discussed in relation to a mixing scenario which considers the salinity distribution in the eastern N. Atlantic associated with the Mediterranean Water (MW) outflow through the Straits of Gibraltar to provide a large-scale context. A mesoscale eddy near the boundary of this water mass advected and deformed a blob of MW, sharpening thermohaline fronts so that double diffusive frontal intrusions developed. Double diffusion processes are invoked as the basic mixing mechanism between the contrasting waters, and following the model of Joyce the lateral mesoscale diffusivity across these fronts is estimated to be 4 m2 s−1. Estimates are made of the lateral fluxes to sub-eddy scales (\u3c20 km) by a number of essentially independent approaches, viz: (a) evaluating the changes in the temperature, salinity and potential vorticity of a particular patch of water, the successive positions of which are deduced from daily optimal streamfunction charts constructed from direct current measurements; (b) evaluating the rate of increase of salinity of the inner shell of the eddy which is attributed to mixing with the more saline outer shell, (c) considering the warm salty blob of MW which was drawn into the eddy circulation as a dye patch and determining its rate of spreading from the increase of its radially symmetrical variance. All of these approaches indicate downgradient mixing of temperature, salinity and potential vorticity anomalies with effective lateral diffusivity of the order of 102 m2 s−1. This is considered to be a shear-augmented diffusivity. Using a salinity flux deduced from the eddy heat fluxes computed from the 8-month moored current meter data together with the large-scale salinity gradient implies large-scale diffusivities of the order 5 × 102 m2 s−1; these summarize the averaged effect of many eddy events and can be used to parameterize lateral mesoscale eddy fluxes. It is shown that salt fluxes of the magnitude estimated are of the order required to balance the input of salt through the Straits of Gibraltar and maintain the large-scale salinity distribution in the eastern North Atlantic

    Deep Lenses of Circumpolar Water in the Argentine Basin

    Get PDF
    Three deep anticyclonic eddies of a species only reported once before [ Gordon and Greengrove, 1986 ] were intersected by hydrographic lines of the World Ocean Circulation Experiment (WOCE) and South Atlantic Ventilation Experiment (SAVE) programs in the Argentine Basin. The vortices are centered near 3500 m depth at the interface between North Atlantic Deep Water and Bottom Water. They have ∼1500-m-thick cores containing Lower Circumpolar Deep Water and a dynamic influence that may span up to two thirds of the water column. As one eddy was observed just downstream of the western termination of the Falkland Escarpment, a destabilization of the deep boundary current by the sudden slope relaxation is suggested as a potential cause of eddy formation. Besides isopycnal interleaving at the eddy perimeters, strongly eroded core properties in the upper parts of the lenses, associated with low density ratios, hint at double diffusion at the top of the structures as another major decay mechanism. The presence of an eddy in the northern Argentine Basin shows the possibility for a northward drift of the vortices, in this basin at least. Deep events in recent current measurements from the Vema Channel are presented that raise the question of further equatorward motion to the Brazil Basin

    Empty colon: a pitfall in the assessment of colonic transit time

    Get PDF
    We report a misleading outcome of colonic transit time (CTT) assessment in an adolescent girl with functional constipation. We found prolonged total and right segmental CTT despite high doses of oral polyethylene glycol 4000 and repeated treatment with polyethylene glycol–electrolyte solution (Klean-Prep®) by nasogastric tube. A colonoscopy aiming at disimpaction of a possible faecal mass revealed an empty colon with dozens of radio-opaque markers adhered to the colonic wall. This report shows that the result of a CTT cannot be accepted blindly. Especially the clustering of many markers within narrow margins might point at entrapment of markers in mucus against the colonic wall

    Temporal Variability of Diapycnal Mixing in Shag Rocks Passage

    Get PDF
    Diapycnal mixing rates in the oceans have been shown to have a great deal of spatial variability, but the temporal variability has been little studied. Here we present results from a method developed to calculate diapycnal diffusivity from moored Acoustic Doppler Current Profiler (ADCP) velocity shear profiles. An 18-month time series of diffusivity is presented from data taken by a LongRanger ADCP moored at 2400 m depth, 600 m above the sea floor, in Shag Rocks Passage, a deep passage in the North Scotia Ridge (Southern Ocean). The Polar Front is constrained to pass through this passage, and the strong currents and complex topography are expected to result in enhanced mixing. The spatial distribution of diffusivity in Shag Rocks Passage deduced from lowered ADCP shear is consistent with published values for similar regions, with diffusivity possibly as large as 90 × 10-4 m2 s-1 near the sea floor, decreasing to the expected background level of ~ 0.1 × 10-4 m2 s-1 in areas away from topography. The moored ADCP profiles spanned a depth range of 2400 to 1800 m; thus the moored time series was obtained from a region of moderately enhanced diffusivity. The diffusivity time series has a median of 3.3 × 10-4 m2 s-1 and a range of 0.5 × 10-4 m2 s-1 to 57 × 10-4 m2 s-1. There is no significant signal at annual or semiannual periods, but there is evidence of signals at periods of approximately fourteen days (likely due to the spring-neaps tidal cycle), and at periods of 3.8 and 2.6 days most likely due to topographically-trapped waves propagating around the local seamount. Using the observed stratification and an axisymmetric seamount, of similar dimensions to the one west of the mooring, in a model of baroclinic topographically-trapped waves, produces periods of 3.8 and 2.6 days, in agreement with the signals observed. The diffusivity is anti-correlated with the rotary coefficient (indicating that stronger mixing occurs during times of upward energy propagation), which suggests that mixing occurs due to the breaking of internal waves generated at topography

    Sphincter saving anorectoplasty (SSARP) for the reconstruction of Anorectal malformations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This report describes a new technique of sphincter saving anorectoplasty (SSARP) for the repair of anorectal malformations (ARM).</p> <p>Methods</p> <p>Twenty six males with high ARM were treated with SSARP. Preoperative localization of the center of the muscle complex is facilitated using real time sonography and computed tomography. A soft guide wire is inserted under image control which serves as the route for final pull through of bowel. The operative technique consists of a subcoccygeal approach to dissect the blind rectal pouch. The separation of the rectum from the fistulous communication followed by pull through of the bowel is performed through the same incision. The skin or the levators in the midline posteriorly are not divided. Postoperative anorectal function as assessed by clinical Wingspread scoring was judged as excellent, good, fair and poor. Older patients were examined for sensations of touch, pain, heat and cold in the circumanal skin and the perineum. Electromyography (EMG) was done to assess preoperative and postoperative integrity of external anal sphincter (EAS).</p> <p>Results</p> <p>The patients were separated in 2 groups. The first group, Group I (n = 10), were newborns in whom SSARP was performed as a primary procedure. The second group, Group II (n = 16), were children who underwent an initial colostomy followed by delayed SSARP. There were no operative complications. The follow up ranged from 4 months to 18 months. Group I patients have symmetric anal contraction to stimulation and strong squeeze on digital rectal examination with an average number of bowel movements per day was 3–5. In group II the rate of excellent and good scores was 81% (13/16). All patients have an appropriate size anus and regular bowel actions. There has been no rectal prolapse, or anal stricture. EAS activity and perineal proprioception were preserved postoperatively. Follow up computed tomogram showed central placement the pull through bowel in between the muscle complex.</p> <p>Conclusion</p> <p>The technique of SSARP allows safe and anatomical reconstruction in a significant proportion of patients with ARM's without the need to divide the levator plate and muscle complex. It preserves all the components contributing to superior faecal continence, and avoids the potential complications associated with the open posterior sagittal approach.</p

    Variability and coherence of the Agulhas Undercurrent in a High-resolution Ocean General Circulation Model

    Get PDF
    The Agulhas Current system has been analyzed in a nested high-resolution ocean model and compared to observations. The model shows good performance in the western boundary current structure and the transports off the South African coast. This includes the simulation of the northward-flowing Agulhas Undercurrent. It is demonstrated that fluctuations of the Agulhas Current and Undercurrent around 50–70 days are due to Natal pulses and Mozambique eddies propagating downstream. A sensitivity experiment that excludes those upstream perturbations significantly reduces the variability as well as the mean transport of the undercurrent. Although the model simulates undercurrents in the Mozambique Channel and east of Madagascar, there is no direct connection between those and the Agulhas Undercurrent. Virtual float releases demonstrate that topography is effectively blocking the flow toward the north
    • …
    corecore