203 research outputs found

    High-Resolution Ultrasound Spectroscopy for the Determination of Phospholipid Transitions in Liposomal Dispersions

    Get PDF
    High-resolution ultrasound spectroscopy (HR-US) is a spectroscopic technique using ultrasound waves at high frequencies to investigate the structural properties of dispersed materials. This technique is able to monitor the variation of ultrasound parameters (sound speed and attenuation) due to the interaction of ultrasound waves with samples as a function of temperature and concentration. Despite being employed for the characterization of several colloidal systems, there is a lack in the literature regarding the comparison between the potential of HR-US for the determination of phospholipid thermal transitions and that of other common techniques both for loaded or unloaded liposomes. Thermal transitions of liposomes composed of pure phospholipids (dimyristoylphosphatidylcholine, DMPC; dipalmitoylphosphatidylcholine, DPPC and distearoylphosphatidylcholine, DSPC), cholesterol and their mixtures were investigated by HR-US in comparison to the most commonly employed microcalorimetry (mDSC) and dynamic light scattering (DLS). Moreover, tramadol hydrochloride, caffeine or miconazole nitrate as model drugs were loaded in DPPC liposomes to study the effect of their incorporation on thermal properties of a phospholipid bilayer. HR-US provided the determination of phospholipid sol-gel transition temperatures from both attenuation and sound speed that are comparable to those calculated by mDSC and DLS techniques for all analysed liposomal dispersions, both loaded and unloaded. Therefore, HR-US is proposed here as an alternative technique to determine the transition temperature of phospholipid membrane in liposomes

    Electrospinning and characterisation of silk fibroin/wool keratin blends

    Get PDF
    Fibroin (degummed silk) and keratin are structural biopolymers respectively from silkworm filaments and from hair, wool, feathers, nails and horns. They are candidate materials for biomediacal applications because they have several useful properties including good biocompatibility and biodegradability. Many works deal about the electrospinning of silk fibroin solutions, but few works deal about the electrospinning of keratin in blend with other polymers; moreover, keratin hasn’t been previously electrospun as pure polymer

    Synthesis and Properties of Sucrose- and Lactose-Based Aromatic Ester Surfactants as Potential Drugs Permeability Enhancers

    Get PDF
    The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such, there is the need to discover new compounds that act as drug permeability enhancers with a favorable toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants. In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized with the aim to characterize them in terms of their physicochemical properties, structure–property relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3 cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when applied both below and above their critical micelle concentration. Among the explored molecules, lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible ~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel potential and safe permeation enhancers for pharmaceutical applications

    Re‐examination of the mechanisms regulating nuclear inositol lipid metabolism

    Get PDF
    Although inositol lipids constitute only a very minor proportion of total cellular lipids, they have received immense attention by scientists since it was discovered that they play key roles in a wide range of important cellular processes. In the late 1980s, it was suggested that these lipids are also present within the cell nucleus. Albeit the early reports about the intranuclear localization of phosphoinositides were met by skepticism and disbelief, compelling evidence has subsequently been accumulated convincingly showing that a phosphoinositide cycle is present at the nuclear level and may be activated in response to stimuli that do not activate the inositol lipid metabolism localized at the plasma membrane. Very recently, intriguing new data have highlighted that some of the mechanisms regulating nuclear inositol lipid metabolism differ in a substantial way from those operating at the cell periphery. Here, we provide an overview of recent findings regarding the regulation of both nuclear phosphatidylinositol 3‐kinase and phosphoinositide‐specific phospholipase C‐ÎČ1

    Effects of the blending ratio on the design of keratin/poly (Butylene succinate) nanofibers for drug delivery applications

    Get PDF
    In recent years there has been a growing interest in the use of proteins as biocompatible and environmentally friendly biomolecules for the design of wound healing and drug delivery sys-tems. Keratin is a fascinating protein, obtainable from several keratinous biomasses such as wool, hair or nails, with intrinsic bioactive properties including stimulatory effects on wound repair and excellent carrier capability. In this work keratin/poly (butylene succinate) blend solutions with functional properties tunable by manipulating the polymer blending ratios were prepared by using 1,1,1,3,3,3‐hexafluoroisopropanol as common solvent. Afterwards, these solutions doped with rho-damine B (RhB), were electrospun into blend mats and the drug release mechanism and kinetics as a function of blend composition was studied, in order to understand the potential of such mem-branes as drug delivery systems. The electrophoresis analysis carried out on keratin revealed that the solvent used does not degrade the protein. Moreover, all the blend solutions showed a non‐ Newtonian behavior, among which the Keratin/PBS 70/30 and 30/70 ones showed an amplified orientation ability of the polymer chains when subjected to a shear stress. Therefore, the resulting nan-ofibers showed thinner mean diameters and narrower diameter distributions compared to the Ker-atin/PBS 50/50 blend solution. The thermal stability and the mechanical properties of the blend elec-trospun mats improved by increasing the PBS content. Finally, the RhB release rate increased by increasing the keratin content of the mats and the drug diffused as drug‐protein complex

    In-situ development of self-defensive antibacterial biomaterials: phenol-g-keratin-EC based bio-composites with characteristics for biomedical applications

    Get PDF
    Recently, the development of highly inspired biomaterials with multi-functional characteristics has gained considerable attention, especially in biomedical, and other health-related areas of the modern world. It is well-known that the lack of antibacterial potential has signiïŹcantly limited biomaterials for many challenging applications such as infection free wound healing and/or tissue engineering etc. In this perspective, herein, a series of novel bio-composites with natural phenols as functional entities and keratin-EC as a base material were synthesised by laccase-assisted grafting. Subsequently, the resulting composites were removed from their respective casting surfaces, critically evaluated for their antibacterial and biocompatibility features and information is also given on their soil burial degradation profile. In-situ synthesised phenol-g-keratin-EC bio-composites possess strong anti-bacterial activity against Gram-positive and Gram-negative bacterial strains i.e., B. subtilis NCTC 3610, P. aeruginosa NCTC 10662, E. coli NTCT 10418 and S. aureus NCTC 6571. More specifically, 10HBA-g-keratin-EC and 20T-g-keratin-EC composites were 100% resistant to colonisation against all of the aforementioned bacterial strains, whereas, 15CA-g-keratin-EC and 15GA-g-keratin-EC showed almost negligible colonisation up to a variable extent. Moreover, at various phenolic concentrations used, the newly synthesised composites remained cytocompatible with human keratinocyte-like HaCaT, as an obvious cell ingrowth tendency was observed and indicated by the neutral red dye uptake assay. From the degradation point of view, an increase in the degradation rate was recorded during their soil burial analyses. Our investigations could encourage greater utilisation of natural materials to develop bio-composites with novel and sophisticated characteristics for potential applications

    International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: From basic strategies to advanced approaches

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of mortality and disability in developed countries. According to WHO, an estimated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to major adverse cardiac and cerebral events. Early detection and care for individuals at high risk could save lives, alleviate suffering, and diminish economic burden associated with these diseases. Carotid artery disease is not only a well-established risk factor for ischemic stroke, contributing to 10%–20% of strokes or transient ischemic attacks (TIAs), but it is also a surrogate marker of generalized atherosclerosis and a predictor of cardiovascular events. In addition to diligent history, physical examination, and laboratory detection of metabolic abnormalities leading to vascular changes, imaging of carotid arteries adds very important information in assessing stroke and overall cardiovascular risk. Spanning from carotid intima-media thickness (IMT) measurements in arteriopathy to plaque burden, morphology and biology in more advanced disease, imaging of carotid arteries could help not only in stroke prevention but also in ameliorating cardiovascular events in other territories (e.g. in the coronary arteries). While ultrasound is the most widely available and affordable imaging methods, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), their combination and other more sophisticated methods have introduced novel concepts in detection of carotid plaque characteristics and risk assessment of stroke and other cardiovascular events. However, in addition to robust progress in usage of these methods, all of them have limitations which should be taken into account. The main purpose of this consensus document is to discuss pros but also cons in clinical, epidemiological and research use of all these techniques

    Enhanced Collateral Growth by Double Transplantation of Gene-Nucleofected Fibroblasts in Ischemic Hindlimb of Rats

    Get PDF
    BACKGROUND: Induction of neovascularization by releasing therapeutic growth factors is a promising application of cell-based gene therapy to treat ischemia-related problems. In the present study, we have developed a new strategy based on nucleofection with alternative solution and cuvette to promote collateral growth and re-establishment of circulation in ischemic limbs using double transplantation of gene nucleofected primary cultures of fibroblasts, which were isolated from rat receiving such therapy. METHODS AND RESULTS: Rat dermal fibroblasts were nucleofected ex vivo to release bFGF or VEGF165 in a hindlimb ischemia model in vivo. After femoral artery ligation, gene-modified cells were injected intramuscularly. One week post injection, local confined plasmid expression and transient distributions of the plasmids in other organs were detected by quantitative PCR. Quantitative micro-CT analyses showed improvements of vascularization in the ischemic zone (No. of collateral vessels via micro CT: 6.8±2.3 vs. 10.1±2.6; p<0.05). Moreover, improved collateral proliferation (BrdU incorporation: 0.48±0.05 vs. 0.57±0.05; p<0.05) and increase in blood perfusion (microspheres ratio: gastrocnemius: 0.41±0.10 vs. 0.50±0.11; p<0.05; soleus ratio: soleus: 0.42±0.08 vs. 0.60±0.08; p<0.01) in the lower hindlimb were also observed. CONCLUSIONS: These results demonstrate the feasibility and effectiveness of double transplantation of gene nucleofected primary fibroblasts in producing growth factors and promoting the formation of collateral circulation in ischemic hindlimb, suggesting that isolation and preparation of gene nucleofected cells from individual accepting gene therapy may be an alternative strategy for treating limb ischemia related diseases

    A predictive in vitro model of the impact of drugs with anticholinergic properties on human neuronal and astrocytic systems

    Get PDF
    The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly
    • 

    corecore