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Abstract: The delivery of therapeutics across biological membranes (e.g., mucosal barriers) by
avoiding invasive routes (e.g., injection) remains a challenge in the pharmaceutical field. As such,
there is the need to discover new compounds that act as drug permeability enhancers with a favorable
toxicological profile. A valid alternative is represented by the class of sugar-based ester surfactants.
In this study, sucrose and lactose alkyl aromatic and aromatic ester derivatives have been synthesized
with the aim to characterize them in terms of their physicochemical properties, structure–property
relationship, and cytotoxicity, and to test their ability as permeability enhancer agents across Calu-3
cells. All of the tested surfactants showed no remarkable cytotoxic effect on Calu-3 cells when
applied both below and above their critical micelle concentration. Among the explored molecules,
lactose p-biphenyl benzoate (URB1420) and sucrose p-phenyl benzoate (URB1481) cause a reversible
~30% decrease in transepithelial electrical resistance (TEER) with the respect to the basal value. The
obtained result matches with the increased in vitro permeability coefficients (Papp) calculated for
FTIC-dextran across Calu-3 cells in the presence of 4 mM solutions of these surfactants. Overall, this
study proposes sucrose- and lactose-based alkyl aromatic and aromatic ester surfactants as novel
potential and safe permeation enhancers for pharmaceutical applications.

Keywords: glycolipids; sucrose monoesters; lactose monoesters; sugar-based surfactants;
biocompatibility studies; permeability enhancers

1. Introduction

Nowadays, many diseases are managed using therapies that mostly require injection-
only administration. The option to move to a non-invasive delivery route is highly attractive
because of the possibility to increase patient compliance, thereby allowing an easier proce-
dure [1]. Drug delivery technologies that respond to this need are scarce, due to the very
low permeation of drugs through mucosal surfaces, which usually represent a barrier to
the passage of active compounds from the external environment into the systemic circu-
lation [2,3]. Absorption enhancing agents are commonly utilized to increase the mucosal
permeation of macromolecules; however, some of them show unacceptable toxicity pro-
files [4,5]. The finding of innovative absorption enhancers with a favorable toxicological
profile that can effectively improve the mucosal absorption of drugs is therefore an urgent
need, and their discovery continues among new chemical classes [6–8].

Sugar-based surfactants have attracted considerable attention from formulation sci-
entists in the past few years due to their high biocompatibility and biodegradability [9].
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They can be largely employed in different fields such as cosmetics, food, and pharma-
ceuticals [10,11]. Their broad applicability relies on the amphiphilic nature, endowed by
the presence of a polar head (e.g., lactose, sucrose, and mannose) and a hydrophobic tail.
Various modifications, both on the polar head portion (mainly changing the sugar type)
and on the non-polar tail, have been explored and several molecules have been designed
to obtain large classes of active amphiphilic surfactants with functional properties [12].
Among all of them, sugar-based fatty acid esters are the most common and easy to find on
the market due to their many investigated applications. In particular, the emulsifying and
permeability-enhancing ability as well as the antimicrobial and antibiofilm properties of
lactose-based esters with saturated and unsaturated fatty acid have been described previ-
ously by our group [13–19]. Moreover, we synthesized a series of lactose-based monoesters
bearing saturated C10, C12, C14, or C16 acyl chains and evaluated cytotoxicity and the
ability to decrease transepithelial electrical resistance (TEER) on airway epithelium Calu-3
cells. Among all of the tested surfactants, 6′-lactose laurate was recognized as the most
promising compound, as it induced a marked and reversible decrease in TEER (down to
~25% of the baseline value) on Calu-3 cells at a non-cytotoxic concentration [20]. Recently,
we synthesized lactose- and other sugar-based esters with alkyl aromatic and aromatic tails
and endowed with antimicrobial activities, as well as the inhibition of biofilm formation
activities [21]. We were then interested in understanding whether this novel class of alkyl
aromatic and aromatic derivatives of lactose and sucrose esters could potentially find appli-
cations as permeability enhancers across the mucosa in comparison to the lactose-based
monoesters bearing saturated or unsaturated linear chains.

Therefore, in this study, alkyl aromatic and aromatic analogues of sucrose- and lactose-
based surfactants were considered with the aim to characterize them and to evaluate their
biocompatibility properties, such as those related to permeability enhancement across
Calu-3 cells, as a model of the airway epithelium. Sucrose and lactose were selected for
the polar head, meanwhile the hydrophobic tails were explored among three different
substituents based on arylalkyl and aryl portions.

2. Results and Discussion
2.1. Chemistry

Aryl aromatic and aromatic lactose- and sucrose-based esters were designed, synthe-
sized, and explored for the first time for the applications described herein. With regard
to the procedures through which the surfactants were obtained, whereas those of lactose
derivatives were previously described [21], those of sucrose-based derivatives were carried
out by means of a modified Mitsunobu reaction [22,23]. With respect to the latter method,
a lower quantity of aromatic acid (1.5 eq.) was used to obtain the monoesterification in
position 6 with a reduction in the formation of undesired products.

For all sugar-based surfactants, physicochemical properties such as hydrophilic-
lipophilic balance (HLB) and octanol–water portion coefficient (clogP) were also calculated
(Table 1). All of the compounds could be classified as hydrophilic surfactants (HLB > 10)
and could act as oil-in-water emulsifiers.

Table 1. Calculated physicochemical properties of the sugar-based ester surfactants.

Sugar Ester MW HLB a clogP b

3a URB1480 Sucrose phenyl acetate 460.4 12.9 −2.05
3b URB1481 Sucrose p-phenyl benzoate 522.5 11.4 −0.32
3c URB1482 Sucrose p-biphenyl acetate 536.5 11.1 −0.37
7a URB1419 Lactose phenyl acetate 460.4 12.9 −2.05
7b URB1420 Lactose p-phenyl benzoate 522.5 11.4 −0.32
7c URB1421 Lactose p-biphenyl acetate 536.5 11.1 −0.37

a Calculated Hydrophilic–Lipophilic Balance by Griffin’s method for non-ionic surfactants [24] [HLB = 20 × (MW
hydrophilic portion/MW)]. b Calculated octanol–water portion coefficient clogP (by OSIRIS Property Explorer) [25].
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2.2. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis/Scanning
(DTA/DSC) Measurements

All TGA traces showed two thermal events related to the weight loss of surfactants
(Figure 1). The first one (≤5% of the initial mass), occurring in the temperature range
of 50–125 ◦C, was related to water desorption of the absorbed or trapped water. The
other one (~65–70% of the initial mass), occurring in the temperature range of 200–400 ◦C,
was associated with the thermal degradation of surfactants. DTA/DSC profiles did not
display any remarkable endothermic transition at temperatures lower than those at which
degradation occurred, suggesting the possible amorphous nature or the simultaneous
melting and degradation of the compounds. Overall, all alkyl aromatic analogues of
sucrose- and lactose-based surfactants displayed similar thermal properties.
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Figure 1. TGA and DTA of lactose-based surfactants (URB1419–URB1421) and sucrose-based surfac-
tants (URB1480–URB1482). The black line in all of the plots refers to the “weight” signal, while the
gray line in all of the plots refers to the “heat flow” signal.

2.3. Critical Micelle Concentration (CMC) Measurements

Figure 2a reports the variation of pyrene fluorescence emission (I and III peaks ratio)
over concentration for all of the analyzed surfactants. Pyrene is a common fluorescence
probe, widely employed to investigate the aggregation state of surfactant in aqueous
solution, as its emission properties are strongly influenced by the polarity of the microen-
vironment. Specifically, a decrease in the ratio between I and III peaks is observed when
the hydrophobicity increases in the surroundings of pyrene as a result of the aggregation
of surfactants into micelles or supramolecular aggregates [26]. All plots show a sigmoidal
decrease in the I and III pyrene peaks over concentration, denoting that all surfactants can
self-assemble in H2O. As is common for surfactants, the concentration at which aggregation
in aqueous solution occurs is strongly dependent on the hydrophilicity/hydrophobicity
balance between the surfactant head and tail [27]. Specifically, changes in the hydropho-
bicity of the surfactant tail exert a marked effect on the self-assembling properties for a
surfactant bearing the same polar head [28]. On the contrary, the variation in the sugar
head has a minor effect [28]. As such, the sigmoidal profiles in Figure 2a are shifted to-
ward a lower concentration from URB1480–URB1482 for sucrose-based surfactants and
URB1419–URB1421 for lactose-based ones. This trend reflects the different hydrophobicity
of the molecules related to the presence of a phenyl (URB1480 and URB1419) or a biphenyl
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group (URB1481, URB1482, URB1420, and URB1421) in the hydrophobic tail, a situation
that affects CMC values (Table 2).
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Figure 2. (a) Fluorescence intensity (peak I, III) vs. concentration plots for sucrose-based surfactants
(URB1480-URB1482) and lactose-based surfactants (URB1419-URB1421). The values reported are
the mean ± SD of three independent experiments. (b) Counts (kCps) vs. concentration plots from
DLS measurements for sucrose-based surfactants (URB1480-URB1482) and lactose-based surfactants
(URB1419-URB1421). The values reported are the mean ± SD of three independent experiments.

Table 2. CMC values for sucrose-based surfactants (URB1480–URB1482) and lactose-based surfactants
(URB1419–URB1421) as calculated from fluorescence and dynamic light scattering (DLS) measurements.

Sugar Ester Fluorescence Spectroscopy
CMC (mM)

Dynamic Light Scattering
CMC (mM)

3a URB1480 0.861 ± 0.076 0.791 ± 0.045
3b URB1481 0.305 ± 0.091 0.329 ± 0.023
3c URB1482 0.095 ± 0.015 0.181 ± 0.026
7a URB1419 0.753 ± 0.084 0.729 ± 0.075
7b URB1420 0.270 ± 0.015 0.344 ± 0.034
7c URB1421 0.110 ± 0.017 0.259 ± 0.063

Indeed, the calculated CMC values were higher for the two surfactants bearing a
phenyl group (URB1480 and URB1419) than for the others. For those surfactants with a
biphenyl group, the elongation of the hydrophobic tail by the insertion of a methylene
linker between the phenyl (hydrophobic chain) and sugar (polar head) moieties caused a
further decrease in CMC. No marked differences in CMC values were observed between
the sucrose-based and lactose-based series, underlining the less pronounced effect on CMC
exerted by the sugar, as previously observed for other sugar-based surfactants [9].

The DLS from the counts analysis confirmed the self-assembling properties of the
amphiphiles analyzed as evidenced by the fluorescence measurements. Figure 2b reports
the variation in the scattering intensities to the detector (kCps) as a function of the surfac-
tant concentration.

All the plots represented displayed an inflection point, corresponding to CMC, as
a sudden increase in the measured counts of the solution occurred when the surfactants
started to aggregate into the micelles. As unimers, instead, the hydrodynamic sizes of the
surfactant molecules were too small and the scattering properties of the solutions were not
markedly different from those of the medium [20,29].
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2.4. Cytotoxicity—[3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) Cell
Viability and Lactate Dehydrogenase (LDH) Assays

All the compounds were tested to evaluate their cytotoxicity profile on Calu-3 cells.
The MTT colorimetric assay, based on the reduction of a yellow tetrazolium salt MTT to
purple formazan crystals by metabolically active cells, was used to measure the cellular
metabolic activity as an indicator of cell viability, proliferation, and cytotoxicity. Indeed,
the viable cells contain NAD(P)H-dependent oxidoreductase enzymes, which reduce MTT
to formazan [30]. The compounds did not show changes in the cell viability at all of the
concentrations tested except for URB1481, which showed a reduction in viability to just
above 70% at the highest tested concentration of 4.5 mM, and URB1419, which produced a
decrease in viability of not lower than 70% (Figure 3a). Moreover, the LDH release assay,
used to assess the level of plasma membrane damage in a cell population, was performed
to evaluate the cytotoxicity of the sugar esters. LDH is in fact a stable enzyme found in all
cell types and is rapidly released into the cell culture medium following damage to the
plasma membrane that occurs after cell damage or death [31]. The results confirmed the
high cell compatibility of the studied compounds at the tested concentrations (Figure 3b).
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Figure 3. (a) MTT cell viability study of sucrose-based surfactants (URB1480-URB1482) and lactose-
based surfactants (URB1419-URB1421) on Calu-3 cells. The values reported are the mean ± SD
of three independent experiments. (b) LDH release study of sucrose-based surfactants (URB1480-
URB1482) and lactose-based surfactants (URB1419-URB1421) on Calu-3 cells. The values reported are
the mean ± SD of three independent experiments.

2.5. TEER Study

TEER studies were performed in Calu-3 cells (Figure 4) to preliminarily evaluate the
potential use of the synthesized sugar esters as absorption enhancers. Data showed that
URB1420 and URB1481 were the most effective surfactants for decreasing TEER, while
URB1419, URB1421, and URB1482 showed a moderate action. URB1480 only poorly
affected TEER, suggesting a possible reduced efficacy in tight junction opening or other
membrane perturbation mechanisms [32].
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Figure 4. TEER study of sucrose-based surfactants (URB1480-URB1482) and lactose-based surfactants
(URB1419-URB1421) at a concentration of 4 mM on Calu-3 monolayers. The values reported are the
mean ± SD of three independent experiments. * p < 0.05 vs. control (Student’s t-test).

The ability of URB1420 and URB1481 to lower TEER more than other synthesized
surfactants suggests that the presence of the p-phenyl benzoate moiety as the hydrophobic
tail seems to play a role through the permeation enhancing effect. On the contrary, if the
p-biphenyl portion is linked to the sugar not directly but through a methylene spacer, as
well as when a benzyl group linked to the ester group is present, the molecule decreases
its ability to lower TEER. It is plausible to suppose that the presence of a flexible spacer
could induce a conformation change in the biphenyl portion, such as to compromise the
goodness of the action. The very small difference in the calculated values of HLB and clogP
(Table 1) between the phenyl acetate and p-biphenyl acetate sugars does not allow us to
think that these parameters can influence the obtained results. With regard to the toxicity
profile, URB1420 demonstrated a good balance between safety and efficacy. Interestingly,
TEER reversed to the initial value after 24 h with all the tested surfactants at a concentration
of 4 mM, suggesting a transient effect on the Calu-3 monolayers and no cellular damage.
The results obtained from the MTT assay support the TEER measurements, which should
be interpreted carefully to ensure that the changes in TEER are not due to the permeant
damage of the cellular membrane integrity. In fact, a transient modulation of the tight
junction opening commonly translates into a reversible effect on TEER, while a permanent
perturbation of the membrane integrity is evidenced by a non-reversible effect on TEER.
However, it should also be noted that a reversible effect on TEER could be a consequence
of a mechanism other than the tight junction opening [33,34]. By comparing the effect
on TEER of the lactose-based monoesters versus that of the saturated linear derivatives,
it should be noted that alkyl aromatic and aromatic lactose monoesters are less effective
when used at non-cytotoxic concentrations. Indeed, URB1420 at the concentration of 4 mM
induced a decrease in TEER on Calu-3 cells comparable to that of lactose caprate (C10) and
lactose palmitate (C12) monoesters, when used at concentrations of 1 mM and 0.054 mM,
respectively [20].

As several studies reported in the literature have demonstrated that a TEER decrease
is correlated with an increase in FITC dextran flux across Calu-3 monolayers [35–37], a
macromolecule permeability assay was then performed using FITC-dextran in order to
collect some preliminary evidence whether the URB1420 and URB1481 could serve as
permeation enhancers.

2.6. Permeability Study

The apparent permeability coefficient (Papp) values of Fluorescin isothiocyanate
(FITC)-dextran in the absence (control) and in the presence of URB1481 and URB1420 at a
concentration of 4 mM was calculated across Calu-3 cell layers (Figure 5). In accordance
with TEER measurements, both surfactants resulted in an increase in FITC-dextran perme-
ation. Comparing the two surfactants, URB1481 showed a more prominent permeation
enhancing effect, while URB1420 demonstrated a moderate permeation that enhanced the
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effect but with a better safety profile. Further investigation into the permeation enhancer
potential of both surfactants on other molecules and mucosal epithelial cells is warranted.
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Figure 5. The apparent permeability coefficient of FITC-Dextran in the presence of URB1481 and
URB1420 at a concentration of 4 mM across Calu-3 monolayers. The values reported are the
mean ± SD of three independent experiments. * p < 0.05 vs. control (Student’s t-test).

3. Materials and Methods
3.1. Materials

Sucrose and diisopropyl azodicarboxylate (DIAD) were purchased from Fluorochem
(Hadfield, UK). Triphenylphosphine (PPh3) and oxalyl chloride [(CO)2Cl2] were purchased
from Alpha Aesar (Ward Hill, MA, USA). Lactose monohydrate, p-toluene sulfonic acid, 2,2-
dimethoxypropane, tetrafluoro boric acid diethyl ether complex [HBF4

.Et2O], phenylacetic
acid, p-biphenyl acetic acid, p-phenyl benzoic acid, acetone [CH3C(O)CH3], dimethylfor-
mamide (DMF), dimethyl sulfoxide (DMSO), methanol (CH3OH), and methylene chloride
(CH2Cl2) were purchased from Sigma-Aldrich (Milan, Italy).

3.2. Synthesis of Sugar-Based Surfactants

The structures of sugar-based aromatic esters (Figure 6) were unambiguously as-
sessed by MS, 1H NMR, and 13C NMR. The ESI-MS spectra were recorded with a Waters
Micromass® ZQ™ (Waters Corporation, Milford, MA, USA) spectrometer in negative or
positive mode using a nebulizing nitrogen gas at 400 L/min and a temperature of 250 ◦C,
cone flow of 40 mL/min, capillary of 3.5 kV, and cone voltage of 60 V; only the molecular
ions [M − H]−, [M + NH4]+, [M + Na]+, and [M + HCOO]− were given. 1H NMR and
13C NMR spectra were recorded on a Bruker AC 400 or 101 (Bruker, Billerica, MA, USA)
spectrometer, respectively, and were evaluated using the TopSpin 2.1 software package;
chemical shifts were determined using the central peak of the solvent. Column chromatog-
raphy purifications were performed under “flash” conditions using Merck 230–400 mesh
silica gel (Darmstadt, Germany). Thin layer chromatography was carried out on Merck
silica gel 60 F254 plates, which were visualized by exposure to ultraviolet light and to an
aqueous solution of ceric ammonium molybdate.
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3.2.1. General Procedure for the Synthesis of Sucrose Aryl Aromatic and Aromatic Ester
Surfactants (3a–c, URB1480–1482) (Scheme 1) [23]

Sucrose (2, 0.50 mmol) was dissolved in dry DMF (3.95 mL) at 70 ◦C under stirring and
a nitrogen atmosphere. The mixture was cooled at room temperature, then PPh3 (0.354 g,
1.35 mmol), the appropriate carboxylic acid 1a–c (0.75 mmol), and dry DMF (1.05 mL) were
added. After complete dissolution, the mixture was cooled to 0 ◦C, and DIAD was added
(0.256 mL, 1.35 mmol) dropwise, stirred for 24 h at room temperature, and concentrated. Pu-
rification of the residue by column chromatography [CH2Cl2/CH3C(O)CH3/CH3OH/H2O
78:10:10:1.5] resulted in 3a–c as solids.
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Scheme 1. Reagents and conditions: (i) PPh3, DIAD, 0 ◦C, dry DMF, rt, 24 h.

β-D-fructofuranosyl 6-O-(2-Phenylethanoyl)-α-D-glucopyranoside (3a, sucrose phenyl acetate,
URB1480) [38]

White solid. Yield: 50%. MS (ESI): 459 [M − H]−, 478 [M + NH4]+, 483 [M + Na]+. 1H
NMR (DMSO-d6): δ = 3.07 (ddd, 1H, JH4-OH4 = 6.0 Hz, JH4-H3 ≈ JH4-H5 = 9.5 Hz, H4), 3.21
(ddd, 1H, JH2-H1 = 3.5 Hz, JH2-OH2 = 6.0 Hz, JH2-H3 = 9.5 Hz, H2), 3.39–3.43 (m, 2H, H1′a,
H1′b), 3.50 (ddd, 1H, JH3-OH3 = 5.0 Hz, JH3-H2 ≈ JH3-H4 = 9.5 Hz, H3), 3.58–3.64 (m, 3H, H5′ ,
H6′a, H6′b), 3.67 (d, J = 16.0 Hz, 1H, HCHAr), 3.72 (d, J = 16.0 Hz, 1H, HCHAr), 3.76–3.82
(m, 1H, H4′ ), 3.90 (dd, 1H, JH3′-OH3′ ≈ JH3′-H4′ = 8.0 Hz, H3′ ), 3.95 (m, 1H, H5), 4.05 (dd, 1H,
JH6a-H5 = 6.0 Hz, JH6a-H6b = 11.5 Hz, H6a), 4.28 (dd, 1H, JH6b-H5 = 1.5 Hz, JH6b-H6a = 11.5 Hz,
H6b), 4.43 (dd, 1H, JOH6′-H6′a ≈ JOH6′-H6′b = 5.5 Hz, OH6′ ), 4.60 (d, 1H, JOH3′-H3′ = 8.0 Hz,
OH3′ ), 4.83 (dd, 1H, JOH1′-H1′a ≈ JOH1′-H1′b = 6.5 Hz, OH1′ ), 4.90 (d, 1H, JOH3-H3 = 5.0 Hz,
OH3), 5.03 (d, 1H, JOH4-H4 = 6.0 Hz, OH4), 5.13 (d, 1H, JOH2-H2 = 6.0 Hz, OH2), 5.19 (d, 1H,
JH1-H2 = 3.5 Hz, H1), 5.20 (d, 1H, JOH4′-H4′ = 6.0 Hz, OH4′ ), 7.24–7.35 (m, 5H, ArH) ppm.
13C NMR (DMSO-d6): δ = 21.2, 62.7, 63.1, 64.6, 70.6, 72.0, 73.1, 75.0, 77.4, 83.2, 92.0, 104.4,
127.2, 128.7, 129.9, 134.8, 171.7 ppm.

β-D-fructofuranosyl 6-O-[2-(4-Phenyl)benzoyl]-α-D-glucopyranoside (3b, sucrose p-phenyl ben-
zoate, URB1481)

Pale yellow solid. Yield: 34%. MS (ESI): 521 [M−H]−, 540 [M + NH4]+, 545 [M + Na]+.
1H NMR (DMSO-d6) δ: 3.25–3.32 (m, 2H, H4, H2), 3.40–3.44 (m, 2H, H1′a, H1′b), 3.48 (ddd,
1H, JH3-OH3 = 5.0 Hz, JH3-H2 ≈ JH3-H4 = 9.0 Hz, H3), 3.52–3.62 (m, 3H, H5′ , H6′a, H6′b),
3.78–3.83 (m, 1H, H4′ ), 3.92 (dd, 1H, JH3′-OH3′ ≈ JH3′-H4′ = 8.0 Hz, H3′ ), 4.09 (ddd, 1H,
JH5-H6b = 1.5 Hz, JH5-H6a = 5.0 Hz, JH5-H4 = 9.0 Hz, H5), 4.36 (dd, 1H, JH6a-H5 = 5.0 Hz,
JH6a-H6b = 12.0 Hz, H6a), 4.41 (dd, 1H, JOH6′-H6′a ≈ JOH6′-H6′b = 6.0 Hz, OH6′ ), 4.47 (dd, 1H,
JH6b-H5 = 1.5 Hz, JH6b-H6a = 12.0 Hz, H6b), 4.68 (d, 1H, JOH3′-H3′ = 8.0 Hz, OH3′ ), 4.85 (dd,
1H, JOH1′-H1′a ≈ JOH1′-H1′b = 6.5 Hz, OH1′ ), 4.96 (d, 1H, JOH3-H3 = 5.0 Hz, OH3), 5.17 (d, 1H,
JOH4-H4 = 5.0 Hz, OH4), 5.18 (d,1H, JOH2-H2 = 6.0 Hz, OH2), 5.21 (d, 1H, JOH4′-H4′ = 5.5 Hz,
OH4′ ), 5.24 (d, 1H, JH1-H2 = 3.5 Hz, H1), 7.42–7.46 (m, 1H, ArH), 7.50–7.54 (m, 2H, ArH),
7.74–7.76 (m, 2H, ArH), 7.82–7.85 (m, 2H, ArH), 8.05–8.08 (m, 2H, ArH) ppm. 13C NMR
(DMSO-d6) δ: 62.5, 63.0, 64.8, 70.5, 70.6, 72.0, 73.1, 74.9, 77.3, 83.1, 92.2, 104.5, 127.4, 127.5,
128.9, 129.0, 129.6, 130.4, 139.4, 145.1, 166.1 ppm.

β-D-fructofuranosyl 6-O-[2-(4-Phenyl)phenylethanoyl]-α-D-glucopyranoside, (3c, sucrose p-biphenyl
acetate, URB1482)

White solid. Yield: 58%. 1H NMR (DMSO-d6) δ: 3.03 (ddd, 1H, JH4-OH4 = 6.0 Hz,
JH4-H3 ≈ JH4-H5 = 9.5 Hz, H4), 3.13 (ddd, 1H, JH2-H1 = 3.5 Hz, JH2-OH2 = 6.0 Hz, JH2-H3 = 9.5 Hz,
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H2), 3.37–3.41 (m, 2H, H1′a, H1′b), 3.48 (ddd, 1H, J H3-OH3 = 5.0 Hz, JH3-H2 ≈ JH3-H4 = 9.5 Hz,
H3), 3.56–3.63 (m, 3H, H5′ , H6′a, H6′b), 3.76–3.81 (m, 1H, H4′ ), 3.88–3.96 (m, 2H, H3′ , H5),
4.14 (dd, 1H, JH6a-H5 = 5.0 Hz, JH6a-H6b = 11.5 Hz, H6a), 4.33 (dd, 1H, JH6b-H5 = 1.0 Hz,
JH6b-H6a = 11.5 Hz, H6b), 4.42 (dd, 1H, JOH6′-H6′a ≈ JOH6′-H6′b = 5.5 Hz, OH6′ ), 4.62 (d, 1H,
JOH3′-H3′ = 8.0 Hz, OH3′ ), 4.82 (dd, 1H, JOH1′-H1′a ≈ JOH1′-H1′b = 6.0 Hz, OH1′), 4.89 (d, 1H,
JOH3-H3 = 5.0 Hz, OH3), 5.02 (d, 1H, JOH4-H4 = 6.0 Hz, OH4), 5.13 (d, 1H, JOH2-H2 = 6.0 Hz,
OH2), 5.17 (d, 1H, JH1-H2 = 3.5 Hz, H1) 5.20 (d, 1H, JOH4′-H4′ = 5.5 Hz, OH4′ ), 7.24–7.28 (m,
2H, ArH), 7.29–7.37 (m, 7H, ArH) ppm. 13C NMR (DMSO-d6): δ = 56.1, 62.5, 63.0, 64.6,
70.3, 70.4, 71.9, 73.1, 75.0, 77.4, 83.2, 92.0, 104.5, 127.4, 127.5, 128.9, 130.0, 139.48, 139.52,
172.4 ppm.

3.2.2. General Procedures for the Synthesis of Lactose Tetra Acetal Aryl Aromatic and
Aromatic Esters (6a–c), and Lactose Aryl Aromatic and Aromatic Ester Surfactants (7a–c,
URB1419–1421) (Scheme 2)

Synthetic procedure, yields, MS, and 1H NMR and 13C NMR data were previously
reported [21].
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3.3. TGA and DTA/DSC Analyses

TGA and DTA/DSC of the surfactants were carried out using a simultaneous thermal
analyzer STA 6000 (Perkin Elmer Inc., Waltham, MA, USA) at a heating rate of 10 ◦C/min
from 35 ◦C to 650 ◦C in a nitrogen environment.

3.4. Fluorimetric Analysis

The pyrene emissions in the surfactant solutions at different concentrations (0.03–4 mM)
were measured using a LS 55 fluorescence spectrometer (PerkinElmer, Waltar, MA, USA)
equipped with a thermostatic bath HAAKE C25P (Artisan Scientific Corporation,
Champaign, IL, USA). For the analyses, three microliters of the pyrene solution in CH3OH
(2 µM) were added to each of the aqueous surfactant solutions. The excitation wavelength
was 334 nm. Ten acquisitions were recorded for each solution in the range of 200–700 nm
at a temperature of 25 ◦C. The peak intensity I (λ = 372 nm) to III (λ = 384 nm) ratio was
plotted against the surfactant concentrations. CMC values were calculated from the center
of the sigmoid by fitting the experimental data through the Boltzmann nonlinear regression
(GraphPad Prism 6 software) according to the following equation:

bottom + (top− bottom)

1 + 10[(log CMC−x)hill slope]

where the top and bottom are the plateau of the curve and the hill slope is the steepness.

3.5. DLS Measurement of the CMC

The scattering intensity to the detector (counts, kCps) was measured for different
concentrations (0.03–4 mM) of surfactant solution using a Malvern Zetasizer Nano S
(Malvern, Worcestershire, UK). Measurements were performed at 25 ◦C at a fixed laser
position (4.65) and attenuation (11). CMC values were calculated from counts versus
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concentration plots by fitting the experimental data using the segmental linear regression
model (GraphPad Prism 6 software).

3.6. Cytotoxicity Study MTT Cell Viability and LDH Release Assays

Calu-3 cells were seeded on 96-well plates at ~50,000 cells per well and were incubated
to attain at least 80% confluence before the experiment. Prior to the assay, the culture
medium was removed and replaced with different concentrations of surfactants (0.03 to
4.5 mM for the fluorescence spectroscopy and DLS analysis) in Hank’s balanced salt so-
lution (HBSS). Triton X-100 (1% v/v in HBSS) and HBSS were used as the positive and
negative control, respectively. After 3 h of incubation, the plate was centrifuged at 400× g
for 5 min. The supernatant was collected for the LDH assay and the cell viability was
measured with the MTT assay according to the manufacturers’ instructions, with at least
three repeats for each sample.

3.7. TEER Measurement

Calu-3 cells were seeded on filter inserts Transwell® at ~200,000 cells per insert. The
cells were cultured in Dulbecco Modified Eagle Medium (DMEM)-F12 to confluence for
around three weeks using an air–liquid culture condition. The culture medium was
changed every 48 h. Prior to sample application, the culture medium was replaced with
HBSS. Baseline TEER was recorded following 30 min of equilibration in HBSS. Surfactants
at a concentration of 4 mM in HBSS were applied to the apical side of the cell monolayers,
and HBSS was applied to the basolateral side. The cells were incubated with the samples
or HBSS as a control for 3 h. During this period, TEER was measured every 30 min. The
samples were then removed and the cells were washed extensively using HBSS. Culture
medium was added to the basolateral chamber and a further measurement of TEER was
taken at 24 h following sample application to establish TEER reversibility. The change in
TEER was reported as a percentage relative to the baseline value.

3.8. In Vitro Cell Permeability Studies

Cell monolayers with TEER over 800 Ω were used in these studies to ensure the
integrity of the monolayers. FITC-dextran MW 4000 was used as a model macromolecular
drug. Prior to sample application, the culture medium was removed, and the cell layers
were washed with HBSS. The cells were equilibrated in HBSS for 30 min. Sucrose ester
solutions at 4 mM and dextran at a final concentration of 0.5 mg/mL in HBSS were applied
to the apical side of the cells. HBSS was added to the basolateral side. A basolateral
solution of 100 µL was collected at 30, 60, 90, 120, 150, and 180 min after sample application
and replaced with an equivalent volume of fresh HBSS. The amount of dextran permeat-
ing the cell monolayers in 3 h was quantified by spectrofluorometric analysis. Dextran
permeability is expressed as the apparent permeability coefficient, calculated using the
following equation:

Papp =

(
∆Q
∆t

)
×

(
1

A× C0

)
where Papp is the apparent permeability (cm/s), DQ/Dt is the permeability rate (amount of
dextran traversing the cell layers over time), A is the diffusion area of the layer (cm2), and
C0 is the apically added dextran concentration [39].

3.9. Statistics

All the data presented are the mean ± standard deviation of triplicate measurements
and are representative of at least three independent experiments. The two-tailed paired Stu-
dent’s t-test was used for the TEER and permeability studies. The results were considered
significant at the level of p < 0.05.
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4. Conclusions

The increasing need for permeation enhancers to deliver therapeutics across bio-
logical membranes (e.g., mucosal membranes) is a concern that needs to be addressed
in the pharmaceutical and cosmetic fields. This is due to the fact that the difficulty
in the permeation across biological membrane is a limitative step that decreases the
bioavailability of the active pharmaceutical ingredients. In this work, we explored
newly synthesized sucrose-based surfactants with potential application as permeation
enhancers, comparing their results with those obtained by linear homologue lactose-
based surfactants. The presented molecules show negligible cytotoxicity in vitro on
Calu-3 cells at concentrations causing a moderate decrease in TEER (30–40% with the
respect to the control) and a slight increase in the Papp coefficient. Moreover, in terms
of permeability enhancement, URB1481 is the most effective as it induces a three-fold
increase in FITC-dextran permeability across Calu-3 cells, despite the fact that its data
are non-statistically significant when compared to the control.

Overall, this study provides new insights into the potential pharmaceutical and cos-
metic use of aromatic sugar-based surfactants as potential permeation enhancers endowed
with a promising cytotoxicity profile. These results are supportive for the development
of a new series of sugar-based surfactants as permeation enhancers for applications in
different fields.

Author Contributions: Conceptualization, S.L., J.K.W.L. and A.D.; methodology, M.V., D.R.P. and C.Y.Q.;
formal analysis, M.V., D.R.P. and C.Y.Q.; investigation, M.V., D.R.P. and C.Y.Q.; writing—original draft
preparation, D.R.P., M.T. and A.D.; writing—review and editing, D.R.P., M.T., A.A., S.L., J.K.W.L. and
A.D.; supervision, A.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Anselmo, A.; Gokarn, Y.; Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 2019, 18, 19–40.

[CrossRef] [PubMed]
2. Amit, K.G.; Ranjit, S.; Gaurav, C.; Goutam, R. Non-invasive systemic drug delivery through mucosal routes, artificial cells,

nanomedicine, and biotechnology. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. S2), 539–551. [CrossRef]
3. Morales, J.O.; Fathe, K.R.; Brunaugh, A.; Ferrati, S.; Li, S.; Montenegro-Nicolini, M.; Mousavikhamene, Z.; McConville, J.T.;

Prausnitz, M.R.; Smyth, H.D.C. Challenges and future prospects for the delivery of biologics: Oral mucosal, pulmonary, and
transdermal routes. AAPS J. 2017, 19, 652–668. [CrossRef] [PubMed]

4. McCartney, F.; Gleeson, J.P.; Brayden, D.J. Safety concerns over the use of intestinal permeation enhancers: A mini-review. Tissue
Barriers 2016, 4, e1176822. [CrossRef] [PubMed]
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