559 research outputs found

    Synthesis towards the antibiotic M139603

    Get PDF
    Imperial Users onl

    Study on the use of a combination of IPython Notebook and an industry‐standard package in educating a CFD course

    Get PDF
    It is common that industry‐standard packages are used in teaching professional engineering courses in final‐year undergraduate and postgraduate levels. To improve the competency of students in using such professional packages, it is important that students develop a good understanding of theoretical/fundamental concepts used on the packages. However, it is always a challenge to teach theoretical/fundamental concepts in the computational‐related courses. The teaching of such subjects can be improved by the use of advanced open‐source web applications. The present research proposes an approach based upon the combination of Jupyter Notebook and an industry‐standard package to teach an applied, computationally related course. We investigate the use of backward design and a novel tool called IPython (Jupyter) Notebook to redesign a postgraduate Computational Fluid Dynamics (CFD) course. IPython Notebook is used to design a series of integrated lecture slides and tutorial tasks, and also one of the assignments for the blended‐learning‐based, semester‐run, CFD course. The tool allows the implementation of backward curriculum design and a learn‐by‐doing approach in redesigning the course. The materials produced were used on the first part of the course which contributed 40% towards the course's final mark and delivered the fundamental concepts of CFD over the first half of the semester. The remaining 60% of the mark was based on a final project from the materials taught on using an industry‐standard CFD package in solving complex CFD problems during the second half of the semester. It was shown that the Ipython environment is a very useful tool which provides learning‐by‐doing practices allowing students to have a coherent integrated lecture, tutorial, and assignment material in a highly interactive way. It improved (a) students' engagement in teaching complex theoretical concepts, (b) students satisfaction of the course and (c) students performance in working with the industry‐standard package over the second half of the semester

    Functional morphology and hydrodynamics of plesiosaur necks: Does size matter?

    Get PDF
    Plesiosaurs are an enigmatic, diverse extinct group of Mesozoic marine reptiles well-known for their unique body plan with two pairs of flippers and usually an elongated neck. The long neck evolved several times within the clade, yet the evolutionary advantages are not well understood. Previous studies have mainly focused on swimming speeds or flipper locomotion. We evaluated the hydrodynamics of neck length and thickness in plesiosaurs using computational fluid dynamics (CFD) simulations based on the Reynolds-Averaged Navier-Stokes (RANS) approach. Simulations were performed of flow patterns forming around five distinctive plesiosaur models, three of different neck lengths (neck/body ratios of 0.2, 0.41, and 0.63) and two of different neck thicknesses (100% and 343% increase compared to cervical vertebrae width). By simulating water flow past the three-dimensional digital plesiosaur models, our results demonstrated that neck elongation does not noticeably affect the force of drag experienced by forward swimming plesiosaurs. Thicker necks did reduce drag compared with thinner necks, however. The consistent drag coefficient experienced by the three neck lengths used in this study indicates that, at least for forward motion at speeds from 1-10m/s, hydrodynamic implications were not a limiting selective pressure on the evolution of long necks in plesiosaurs. We also tested the effects of bending the long neck during forward motion. Bending a plesiosaur neck evenly in lateral flexion increased the surface area normal to flow, and subsequently increased drag force. This effect was most noticeable in the longest necked forms

    Interventions to Increase Follow-Up of Abnormal Cervical Cancer Screening Results: A Systematic Literature Review and Meta-Analysis

    Get PDF
    INTRODUCTION: Ensuring timely follow-up of abnormal screening results is essential for eliminating cervical cancer. OBJECTIVE: The purpose of the study was to review single and multicomponent interventions designed to improve follow-up of women with abnormal cervical cancer screening results. We report on effectiveness across studies, and describe what aspects of these interventions might be more impactful. METHODS: Publications were searched between January 2000 and December 2022. The search included observational, quasi-experimental (pre-post studies) and randomized controlled studies describing at least one intervention to increase follow-up of women with abnormal cervical cancer screening results. Outcomes of studies included completion of any follow-up (i.e., attending a follow-up appointment), timely diagnosis (i.e., colposcopy results within 90 days of screening) and time to diagnostic resolution (i.e., days between screening and final diagnosis). We assessed risk of bias for observational and quasi-experimental studies using the Newcastle-Ottawa Scale (NOS) tool and the Cochrane collaboration tool for randomized studies. We conducted a meta-analysis using studies where data were provided to estimate a summary average effect of the interventions on follow-up of patients and to identify characteristics of studies associated with an increased effectiveness of interventions. We extracted the comparison and intervention proportions of women with follow-up before and after the intervention (control and intervention) and plotted the odds ratios (ORs) of completing follow-up along with the 95% confidence intervals (CIs) using forest plots for the interventions vs. controls when data were available. FINDINGS: From 7,457 identified studies, 28 met the inclusion criteria. Eleven (39%) of the included studies had used a randomized design. Most studies (63%) assessed completion of any follow-up visit as the primary outcome, whereas others measured time to definite diagnosis (15%) or diagnostic resolution (22%). Navigation was used as a type of intervention in 63% of the included studies. Most interventions utilized behavioral approaches to improve outcomes. The overall estimate of the OR for completion of follow-up for all interventions was 1.81 (1.36-2.42). The highest impact was for programs using more than one approach (multicomponent interventions) to improve outcomes with OR = 3.01 (2.03-4.46), compared with studies with single intervention approaches with OR = 1.56 (1.14-2.14). No statistical risks were noted from publication bias or small-study effects in the studies reviewed. CONCLUSION: Our findings revealed large heterogeneity in how follow-up of abnormal cervical cancer screening results was defined. Our results suggest that multicomponent interventions were more effective than single component interventions and should be used to improve follow-up after abnormal cervical cancer screening results. Navigation appears to be an important tool for improving follow-up. We also provide recommendations for future studies and implications for policy in terms of better defining outcomes for these interventions

    An exact collisionless equilibrium for the force-free Harris sheet with low plasma beta

    Get PDF
    We present a first discussion and analysis of the physical properties of a new exact collisionless equilibrium for a one-dimensional nonlinear force-free magnetic field, namely, the force-free Harris sheet. The solution allows any value of the plasma beta, and crucially below unity, which previous nonlinear force-free collisionless equilibria could not. The distribution function involves infinite series of Hermite polynomials in the canonical momenta, of which the important mathematical properties of convergence and non-negativity have recently been proven. Plots of the distribution function are presented for the plasma beta modestly below unity, and we compare the shape of the distribution function in two of the velocity directions to a Maxwellian distribution

    A hierarchy of event-related potential markers of auditory processing in disorders of consciousness.

    Get PDF
    Functional neuroimaging of covert perceptual and cognitive processes can inform the diagnoses and prognoses of patients with disorders of consciousness, such as the vegetative and minimally conscious states (VS;MCS). Here we report an event-related potential (ERP) paradigm for detecting a hierarchy of auditory processes in a group of healthy individuals and patients with disorders of consciousness. Simple cortical responses to sounds were observed in all 16 patients; 7/16 (44%) patients exhibited markers of the differential processing of speech and noise; and 1 patient produced evidence of the semantic processing of speech (i.e. the N400 effect). In several patients, the level of auditory processing that was evident from ERPs was higher than the abilities that were evident from behavioural assessment, indicating a greater sensitivity of ERPs in some cases. However, there were no differences in auditory processing between VS and MCS patient groups, indicating a lack of diagnostic specificity for this paradigm. Reliably detecting semantic processing by means of the N400 effect in passively listening single-subjects is a challenge. Multiple assessment methods are needed in order to fully characterise the abilities of patients with disorders of consciousness

    Evidence-based decision support for pediatric rheumatology reduces diagnostic errors.

    Get PDF
    BACKGROUND: The number of trained specialists world-wide is insufficient to serve all children with pediatric rheumatologic disorders, even in the countries with robust medical resources. We evaluated the potential of diagnostic decision support software (DDSS) to alleviate this shortage by assessing the ability of such software to improve the diagnostic accuracy of non-specialists. METHODS: Using vignettes of actual clinical cases, clinician testers generated a differential diagnosis before and after using diagnostic decision support software. The evaluation used the SimulConsult® DDSS tool, based on Bayesian pattern matching with temporal onset of each finding in each disease. The tool covered 5405 diseases (averaging 22 findings per disease). Rheumatology content in the database was developed using both primary references and textbooks. The frequency, timing, age of onset and age of disappearance of findings, as well as their incidence, treatability, and heritability were taken into account in order to guide diagnostic decision making. These capabilities allowed key information such as pertinent negatives and evolution over time to be used in the computations. Efficacy was measured by comparing whether the correct condition was included in the differential diagnosis generated by clinicians before using the software ( unaided ), versus after use of the DDSS ( aided ). RESULTS: The 26 clinicians demonstrated a significant reduction in diagnostic errors following introduction of the software, from 28% errors while unaided to 15% using decision support (p \u3c 0.0001). Improvement was greatest for emergency medicine physicians (p = 0.013) and clinicians in practice for less than 10 years (p = 0.012). This error reduction occurred despite the fact that testers employed an open book approach to generate their initial lists of potential diagnoses, spending an average of 8.6 min using printed and electronic sources of medical information before using the diagnostic software. CONCLUSIONS: These findings suggest that decision support can reduce diagnostic errors and improve use of relevant information by generalists. Such assistance could potentially help relieve the shortage of experts in pediatric rheumatology and similarly underserved specialties by improving generalists\u27 ability to evaluate and diagnose patients presenting with musculoskeletal complaints. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT02205086

    Consciousness-specific dynamic interactions of brain integration and functional diversity

    Get PDF
    Abstract: Prominent theories of consciousness emphasise different aspects of neurobiology, such as the integration and diversity of information processing within the brain. Here, we combine graph theory and dynamic functional connectivity to compare resting-state functional MRI data from awake volunteers, propofol-anaesthetised volunteers, and patients with disorders of consciousness, in order to identify consciousness-specific patterns of brain function. We demonstrate that cortical networks are especially affected by loss of consciousness during temporal states of high integration, exhibiting reduced functional diversity and compromised informational capacity, whereas thalamo-cortical functional disconnections emerge during states of higher segregation. Spatially, posterior regions of the brain’s default mode network exhibit reductions in both functional diversity and integration with the rest of the brain during unconsciousness. These results show that human consciousness relies on spatio-temporal interactions between brain integration and functional diversity, whose breakdown may represent a generalisable biomarker of loss of consciousness, with potential relevance for clinical practice

    Chromosome-level assembly reveals extensive rearrangement in sakar falcon and budgerigar, but not ostrich, genomes

    Get PDF
    Background: The number of de novo genome sequence assemblies is increasing exponentially; however, relatively few contain one scaffold/contig per chromosome. Such assemblies are essential for studies of genotype-to-phenotype association, gross genomic evolution, and speciation. Inter-species differences can arise from chromosomal changes fixed during evolution, and we previously hypothesized that a higher fraction of elements under negative selection contributed to avian-specific phenotypes and avian genome organization stability. The objective of this study is to generate chromosome-level assemblies of three avian species (saker falcon, budgerigar, and ostrich) previously reported as karyotypically rearranged compared to most birds. We also test the hypothesis that the density of conserved non-coding elements is associated with the positions of evolutionary breakpoint regions. Results: We used reference-assisted chromosome assembly, PCR, and lab-based molecular approaches, to generate chromosome-level assemblies of the three species. We mapped inter- and intrachromosomal changes from the avian ancestor, finding no interchromosomal rearrangements in the ostrich genome, despite it being previously described as chromosomally rearranged. We found that the average density of conserved non-coding elements in evolutionary breakpoint regions is significantly reduced. Fission evolutionary breakpoint regions have the lowest conserved non-coding element density, and intrachromomosomal evolutionary breakpoint regions have the highest. Conclusions: The tools used here can generate inexpensive, efficient chromosome-level assemblies, with > 80% assigned to chromosomes, which is comparable to genomes assembled using high-density physical or genetic mapping. Moreover, conserved non-coding elements are important factors in defining where rearrangements, especially interchromosomal, are fixed during evolution without deleterious effects
    corecore