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Abstract
Current sheets are important for the structure and dynamics of many plasma systems. In space
and astrophysical plasmas they play a crucial role in activity processes, for example by
facilitating the release of magnetic energy via processes such as magnetic reconnection. In this
contribution we will focus on collisionless plasma systems. A sensible first step in any
investigation of physical processes involving current sheets is to find appropriate equilibrium
solutions. The theory of collisionless plasma equilibria is well established, but over the past few
years there has been a renewed interest in finding equilibrium distribution functions for
collisionless current sheets with particular properties, for example for cases where the current
density is parallel to the magnetic field (force-free current sheets). This interest is due to a
combination of scientific curiosity and potential applications to space and astrophysical plasmas.
In this paper we will give an overview of some of the recent developments, discuss their
potential applications and address a number of open questions.

Keywords: collisionless plasmas, current sheets, plasma equilibrium, force-free magnetic fields

(Some figures may appear in colour only in the online journal)

1. Introduction

In many laboratory or natural plasma systems, current sheets
play important roles for understanding their structure and their
dynamics (see e.g. [1, 2]). For example in space and astro-
physical plasmas, current sheets are crucial for facilitating
energy release and conversion processes such as magnetic
reconnection. The focus of this paper will be on collisionless
plasmas described by the Vlasov–Maxwell (VM) equations.

For the investigation of many phenomena, for example
waves or instabilities, but also for general modelling purposes
it is useful to start with configurations that are in equilibrium.
VM equilibrium theory has a long history (see the discussion
and references in, for example [2–4]) and is, of course, not
restricted to Cartesian geometry (see e.g. [3] for some refer-
ences, but also e.g. [5, 6]), to spatial variations in just one

direction (see e.g. [2, 4, 7–13]) or to systems that are not
charge-neutral (e.g. [14]). In particular, collisionless current
sheet equilibria with different properties than those con-
sidered in this paper can be found by making use of another
(adiabatic) constant of motion (see e.g. [10, 15–19]).

Equilibria of collisionless current sheets can be modelled
theoretically as configurations which depend on only one
Cartesian spatial coordinate, which we will take to be the
z-coordinate in this paper. We will only discuss non-relati-
vistic cases (for examples of relativistic treatments see e.g.
[4]). We shall also assume that the plasma systems we discuss
are quasi-neutral (i.e. the charge density vanishes, but there
may be a non-vanishing electric field) or exactly neutral (both
the charge density and the electric field vanish). We will focus
on the so-called ‘inverse’ problem in which the microscopic
part of a VM equilibrium, i.e. the distribution functions are
determined by using information about the macroscopic
magnetic field profile. In particular the emphasis of this paper
will be on force-free magnetic fields and the ‘inverse’ pro-
blem associated with finding distribution functions for such
fields.

The structure of this paper is as follows. In section 2 we
will present the basic theoretical background for VM equili-
brium theory as used in this paper. In section 3 we will
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present a number of examples for solutions to the ‘inverse’
problem for force-free fields, concentrating on recent work
and including a completely new example as well. In section 4,
a discussion and our conclusions will be presented.

2. Basic Theory

The non-relativistic VM equations are as follows (e.g. [2]):
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where s indicates the particle species, fs the distribution
function of species s, qs and ms the charge and mass of the
species, E the electric field, B the magnetic induction (which
we will call the magnetic field from now on), and 0m and 0
are the permeability of free space and the vacuum permit-
tivity, respectively. The symbols r and v indicate gradient
operators in configuration space and in velocity space.

In this paper, we are interested in equilibrium solutions of
this set of equations (hence t 0¶ ¶ = ). We will also assume
that our equilibrium solutions are (quasi-)neutral and that the
charge density vanishes (this point will be discussed later in a
bit more detail). Because we are interested in current sheets
we shall assume that the magnetic field B depends only on
one Cartesian coordinate, which we will take to be z, and that
its z-component vanishes, i.e. that

z B z B zB , , 0 . 6x y=( ) ( ( ) ( ) ) ( )

To satisfy equation (5) we can write B in the usual way as the
curl of a vector potential A, B Ar=  ´ . Under the assump-
tions made it is without loss of generality possible to take

z A z A zA , , 0 , 7x y=( ) ( ( ) ( ) ) ( )
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For later reference we give the form that Ampèreʼs law (2) takes
on when expressed in terms of the vector potential:
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The (stationary) Vlasov equation itself can in general be
solved by the method of characteristics, which are identical to
the particle orbits in the equilibrium electromagnetic fields. We
usually do not know the particle orbits a priori, either because
the electromagnetic fields are not known until we solve the
equilibrium Maxwell equations or, even if the fields are known,
as we will assume later in this paper, because the particle orbits
are not explicitly known in full. Therefore, although under the
assumptions we have made above the particle orbit problem is
in principle integrable this is in practice not of much use and
instead one makes use of the constants of motion associated
with the symmetries of the problem: time-invariance leading to
a constant Hamiltonian

H m v q
1

2
12s s s

2= + F ( )

and translational invariance in the x- and y-directions leading to
constant canonical momenta associated with those directions,

p m v q A , 13xs s x s x= + ( )

p m v q A , 14ys s y s y= + ( )

to specify the equilibrium distribution functions as functions of
these constants of motion:

f F H p p, , . 15s s s xs ys= ( ) ( )

Although this is what could be called the standard approach to
determining collisionless equilibria it does not cover all possible
cases for even one-dimensional equilibria. This problem has
already been pointed out by Grad [20] and as we will discuss in
a bit more detail later, the method is, for example, unable to
represent multiple current sheet cases or certain classes of
asymmetric current sheets. Especially in the case of asymmetric
current sheets there have been recent developments to calculate
VM equilibria of asymmetric collisionless current sheets that
are based on taking some aspects of the characteristics into
account (see e.g. [21, 22]).

One can define two different approaches to the VM
equilibrium problem. The first one, which we will call the
‘forward’ approach starts by specifying the equilibrium dis-
tribution functions F H p p, ,s s xs ys( ). One can then calculate the
charge and current densities as functions of the electric and
vector potentials,

A A q F H p p v, , , , d , 16x y
s

s s s xs ys
3òår F =( ) ( ) ( )

j A A q v F H p p v, , , , d , 17x x y
s

s x s s xs ys
3òåF =( ) ( ) ( )

j A A q v F H p p v, , , , d . 18y x y
s

s y s s xs ys
3òåF =( ) ( ) ( )

Instead of solving Gauss’ law explicitly the assumption of
quasi-neutrality is an excellent approximation if the typical
length scales of the plasma are much larger than the Debye
length. Mathematically this means that one sets the charge
density to zero and determines Φ as a function of Ax and Ay

(see e.g. [2, 23]; also [3] for a detailed discussion). Using
A A,x yF( ) in the expressions for jx and jy, Ampèreʼs law in the
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form of equations (10) and (11) becomes a set of two coupled
second order ordinary differential equations, which can be
solved by standard methods subject to appropriate boundary
conditions, thus determining A zx ( ) and A zy ( ) and by differ-
entiation B zx ( ) and B zy ( ).

The second approach, which we will call the ‘inverse’
approach, starts from a given magnetic field profile B zx ( ) and
B zy ( ) and tries to determine from this information compatible
equilibrium distribution functions F H p p, ,s s xs ys( ). Two pro-
blems are immediately apparent. As already briefly discussed,
there are magnetic field profiles that cannot be generated by
distribution functions of the assumed form. We mentioned a
couple of examples above, but it would be important to have a
method to find out a priori whether or not a magnetic field
profile is compatible with the assumed type of distribution
function. We will come back to this point a bit later. The
second problem is uniqueness, because there are many dif-
ferent distribution functions of the form F H p p, ,s s xs ys( ) which
result in the same magnetic field profile. As an example, we
mention the Harris sheet (B z z Ltanhx µ( ) ( )) which in its
original form [24] has distribution functions of the form
F H u pexps s s ys ysbµ - -[ ( )] with k Ts B s

1b = -( ) (where Ts is
the temperature of species s) and uys a constant which is equal
to the bulk flow speed of species s in the y-direction. How-
ever, other forms of distribution functions for the Harris sheet
magnetic field are known (e.g. [25]).

In this paper we will focus on the ‘inverse’ approach and
we will choose a method which can address both of the
problems discussed above. The method we will use has been
suggested by Channell [26] (for earlier work using a similar
approach, see [27]; see also [23, 28]). The method makes use
of the fact that the current density can be directly linked to
one component of the pressure tensor, which in the coordinate
system we use is the Pzz component, defined as

P A A m v F H p p v, , , d . 19zz x y
s

s z s s xs ys
2 3òå=( ) ( ) ( )

Here, we have already taken into account that Channellʼs
method imposes not only quasi-neutrality, but exact neutrality
( 0F = ) and hence Pzz will be a function of Ax and Ay only.
The current density can generally be expressed as (see e.g.
[3, 23])
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This set of coupled ordinary differential equations is
equivalent to the equation of motion of a particle in a
potential, with the role of ‘time’ played by the coordinate z,
the position of the particle given by A zx ( ) and A zy ( ), and the

potential in which the particle moves given by Pzz0m . These
properties of the 1D VM equilibrium problem have been
noticed before by many authors (see e.g. [3] for a discussion
and references).

As an example we show a surface plot for P A A,zz x y( ) for
the Harris sheet (figure 1). The distribution function used for
the plot is F H p p H u p, , exps s xs ys s s ys ysbµ - -( ) [ ( )] which
leads to P Aexp 2zz yµ ( ) with Ay appropriately normalised.
Because the potential Pzz depends only on one of the coor-
dinates Ax, Ay, the particle will be able to move in the Ax

direction at constant ‘velocity’ corresponding to a constant
guide field B By y0= . The value of this constant is determined
by the initial conditions of the particle motion.

We discuss this analogy to particle motion in a potential
in so much detail because it is very useful in addressing the
first of the two problems mentioned above, namely to find out
a priori what types of magnetic field profiles are inconsistent
with the ‘inverse’ approach as specified so far. As an example
we will use an asymmetric current sheet without guide field,
i.e. with only B z 0x ¹( ) . Then, as in the Harris sheet case Pzz

will only be a function of Ay. For a particle trajectory to
represent a current sheet, i.e. for the magnetic field to reverse
direction, the particle trajectory has to have a turning point
where it stops and turns around. However, on a surface
depending only on one single variable the return branch of the
trajectory has to be the same as the inward part of the tra-
jectory, hence ruling out any potential asymmetry. We remark
that this changes if a guide field, even if constant, is intro-
duced, because that opens up the possibility of making Pzz

dependent on Ax as well (see e.g. [27, 29, 30]). Reasoning
along the same lines one can, for example, rule out repre-
senting configurations such as double current sheets with this
approach.

The uniqueness problem can be addressed to some extent
by restricting the class of distribution function under con-
sideration. In his method Channell [26] uses equilibrium

Figure 1. The surface shows P A A A, exp 2 2zz x y y=( ) ( ) , representing
the potential surface for the Harris sheet. The yellow line shows the
solution A z A z z z, , ln coshx y = -( ( ) ( )) ( ( ( ))) corresponding to a
(normalised) magnetic field of the form z zB tanh , 1, 0=( ) ( ( ) ).
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distribution functions of the type
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For the method to work one has to ensure that 0F = which
implies that N A A N A A N A A, , ,i x y e x y x y= =( ) ( ) ( ) (see e.g.
[3, 31, 32]) for all possible values of Ax, Ay. This imposes
additional conditions which the parameters of the distribution
function have to satisfy. The neutral Pzz is then given by
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Using the canonical momenta instead of the velocity com-
ponents as integration variables and using equation (27), (26)
becomes

N A A
n

m v

m
p q A p q A

g p p p p

,
2

exp
2

, d d . 28

x y
s

s s

s

s
xs s x ys s y

s xs ys xs ys

0
2

th,
2

2 2

ò òp

b

=

´ - - + -

´

-¥

¥

-¥

¥

⎧⎨⎩
⎫⎬⎭

( )

[( ) ( ) ]

( ) ( )

For P A A,zz x y( ) a known function of Ax and Ay, this is a
Fredholm integral equation of the first type that has to be
solved for the unknown function g p p,s xs ys( ).

We remark that different functional dependences of the
distribution function on the Hamiltonian Hs are possible,
leading to integral equations with different kernels. As far as
the authors are aware this possibility has not yet been
investigated in much detail (except in [33]). One interesting
possibility would be to consider an energy dependence
leading to Kappa-type distribution functions as in e.g. [25] for
the Harris sheet magnetic field.

3. Examples

In his paper, Channell [26] gives a number of examples of
how his method could be used to find distribution functions
for given functions N A A,x y( ). If one would like to start from
a given magnetic field profile z B z B zB , , 0x y=( ) ( ( ) ( ) ) there
is an additional step that one has to carry out, namely to
determine N A A,x y( ) and hence P A A,zz x y( ) from the magnetic

field profile. The first step in this process should of course be
to determine the vector potential components A zx ( ) and A zy ( )
for the given magnetic field profile. One can determine how
Pzz varies with z along the given trajectory A z A z,x y( ) ( ) by
using macroscopic force balance which states that

z

B z B z
P z

d
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0. 29
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Integrating with respect to z and calling the integration con-
stant PT, one gets

P z P
B z B z

2
. 30zz T

x y
2 2

0m
= -

+
( )

( ) ( )
( )

Constructing a function of two variables P A A,zz x y( ) defined
over the complete Ax–Ay-plane from knowledge of P zzz ( )
along one single trajectory A z A z,x y( ) ( ) is sometimes pro-
blematic due to the intrinsic non-unique nature of this task,
but as we will see later this can also provide opportunities for
finding more convenient solutions. We see from equation (30)
that the absolute value of Pzz along the trajectory is deter-
mined only up to a constant, because the value of PT is
arbitrary apart from demanding that P zzz ( ) has to be positive
for all z. We remark that equations (20) and (21) are con-
straints that also have to be satisfied, and imply that along the
known trajectory not only Pzz is determined, but also its
gradient. Apart from these constraints the surface P A A,zz x y( )
can in principle be deformed arbitrarily (obviously one needs
to ensure P 0zz > ).

For the remainder of this section we will focus on a
particular type of current sheet magnetic fields, the so-called
force-free current sheets. Force-free magnetic fields have a
current density that is parallel to the magnetic field (j B ),
i.e. j B0m a= . Here α can be either a constant, leading to
linear force-free fields, or a function of position, leading to
nonlinear force-free fields. Under the assumptions made we
can have at most za a= ( ). In the context of the ‘inverse’
approach as discussed above the question of what type of
P A A,zz x y( ) functions are consistent with force-free magnetic
fields has been answered in [3]. For force-free fields

z

B z B zd

d 2
0, 31

x y
2 2
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+
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⎝
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⎞
⎠
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which together with the force balance equation (29) gives the
condition

P

z

d

d
0, 32zz = ( )

implying that the trajectory A zx ( ), A zy ( ) representing a force-
free solution of Ampèreʼs law has to coincide with a contour
of the Pzz surface.

This is, for example, satisfied by Pzz surfaces that are
equivalent to attractive central potentials depending on
A Ax y

2 2+ . Such potentials have circular contours and admit
circular trajectories thus satisfying the condition for force-free
fields (see figure 2), actually leading to one-dimensional lin-
ear force-free fields z z zB sin , cos , 0µ( ) ( ( ) ( ) ) (modulo an
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arbitrary phase). Distribution functions leading to linear force-
free fields have been known since the 1960ʼs (e.g. [26,
34–39]) and generally have the form F H p p,s s xs ys

2 2+( ) (see
e.g. [3]).

A distribution function leading to a nonlinear force-
free field was first found by Harrison and Neukirch [31].
The magnetic field profile for that case was zB =( )
B z ztanh , cosh , 00

1-( ( ) ( ( )) ), with B0 the constant value of the
magnitude of the magnetic field. This magnetic field profile
has been named the force-free Harris sheet, because it has the
same B zx ( ) as the Harris sheet, but a B zy ( ) which renders it
force-free. The form of Pzz found in [31] was

P A A
B A

B L

A
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b,

2
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2
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2
exp

2
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with L a typical length scale (half-width) of the current sheet
configuration and b representing a constant background
pressure. The background pressure is needed to keep Pzz

positive (see figure 3). The form of the distribution functions
for the pressure (33) can be found and is

F
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Here as, bs, uxs and uys are constant parameters of the problem
(the other parameters have been defined before). As discussed
in [31, 32] the parameters of the distribution functions have to
satisfy a number of relations to on the one hand make the
macroscopic parameters such as B0, L, and b consistent with
the kinetic parameters and on the other hand to satisfy the
neutrality condition N A A N A A, ,e x y i x y=( ) ( ). One very
interesting property of the distribution functions (34) is that
they can have multiple maxima in velocity space in both the
vx and the vy directions. The existence of multiple maxima in
velocity space can be linked to the width of the current sheet.
The condition for the distribution function (34) to have only a
single maximum in vx was derived in [32] to be
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where r m v eBg s s s, th, 0= ( ) is the thermal gyroradius of species
s. If we assume that all parameters except L and uxs are fixed,
one sees that a decrease in the current sheet width L corre-
sponds to an increase in uxs, which will eventually lead to a
violation of condition (35) and hence multiple maxima in the
vx direction (for a detailed discussion see [32]).

A number of important extensions have been made to this
first nonlinear force-free collisionless current sheet equili-
brium. The non-uniqueness of the ‘inverse’ approach was
shown by Wilson and Neukirch [33] who showed that the Pzz

given in equation (33) can be obtained with distribution
functions that have a different dependence on the Hamiltonian
Hs than in equation (34), but the same dependence on the
canonical momenta. It was also shown in [40] how the force-
free Harris sheet distribution function (34) can be generalised
to the relativistic regime.

An important extension to previous work was made by
Abraham-Shrauner [41], who generalised the approach to a
whole family of magnetic field profiles of the form

z B z L k z L kB sn ; , cn ; , 0 , 370=( ) ( ( ) ( ) ) ( )

where x ksn ;( ) and x kcn ;( ) are Jacobian elliptic functions,
with k0 1  the modulus. This magnetic field profile
includes the previously known cases of the linear force-free
field in the limit k 0 and of the force-free Harris sheet in

Figure 2. The surface shows P A A A A c,zz x y x y
2 2µ + +( ) and the

yellow line shows the solution A z A z z z, sin , cosx y =( ( ) ( )) ( ( ) ( ))
corresponding to a (normalised) magnetic field of the
form z z zB sin , cos , 0=( ) ( ( ) ( ) ).

Figure 3. The surface shows the P A A,zz x y( ) for the force-free Harris
sheet derived in [31] and the yellow line shows the force-free
solution corresponding to a contour of Pzz.
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the limit k 1 (see e.g. [42]). The function Pzz takes the form
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with the distribution function given by

F H p p
n H

v

a a k u p k
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exp
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exp exp , 39
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with ais constant parameters. Not surprisingly, the velocity
space structure of these distribution functions is of similar
complexity to that of the force-free Harris sheet.

Another important generalisation to the case of the force-
free Harris sheet was made by Kolotkov et al [43]. Dis-
tribution functions of the type (34) as well as those derived in
[33] not only lead to a constant Pzz along the force-free
solution, but also to a constant particle density and conse-
quently to a constant temperature (if defined by the ratio of
Pzz and the particle density). However, a constant Pzz at the
macroscopic level could also be achieved by letting both the
particle density and the temperature vary, but keeping their
product constant. This is exactly what was achieved in [43] by
using modified distribution functions of the form

F
n

v
H a u p b

H u p

2
exp cos

exp exp ,

40

s
s

s
s s s s xs xs s

s s s ys ys

0

th,
3
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g gb gb

b b

= - +

+ -

( )
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( )

with an additional parameter γ introduced to allow different parts
of the distribution function to have different energy dependence
(for a similar approach in a different context see e.g. [28, 44]).
The macroscopic form of P A A,zz x y( ) given in equation (33)
does not change, but some of the relations between microscopic
and macroscopic parameters are modified due to the additional
dependence of the distribution function on γ.

One of the shortcomings of all nonlinear force-free cases
discussed so far is that they all have a plasma beta that is
larger than unity ( 1;plb > for discussion see e.g. [45])
independently of the choice of parameters, as long as the
constraint F 0s > is satisfied. This is unsatisfactory, because
force-free fields are usually associated with 1plb < . One can,
however, make use of the fact that P A A,zz x y( ) can be changed
along the lines described above. For force-free cases a
mathematical formulation of this property has been given in
[3] showing that a function P A A,zz x y( ) that admits a force-free
solution can be transformed into other functions P A A,zz x y¯ ( )
admitting the same force-free solution by

P A A
P

P A A,
1

, , 41zz x y
ff

zz x y
y

y=
¢

¯ ( )
( )

( ( )) ( )

where Pff is the constant value of Pzz on the force-free contour
and xy ( ) is a function that is arbitrary apart from the con-
straint that the expression on the right hand side of
equation (41) has to be positive. As noted in [45, 46] a
transformation of the form

P
P

P Pexp
1

, 42zz zz ff
0

y = -
⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )

with P0 a positive constant pressure, leads to (using
equation (41)) a transformed value of Pzz on the force-free
contour of P Pff 0=¯ , i.e. one can in principle reduce plb for the
force-free solution to any value below one. Starting from
equation (33), as a function of Ax and Ay, Pzz¯ becomes [45]

P A A P
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This form of Pzz¯ leads to a much more complicated form of
equation (28) that needs to be solved, resulting in quite
complex mathematical problems. In [45, 46] a solution in the
form of infinite series of Hermite polynomials is found. The
authors also show that the series converges for all values of

plb , in particular 1plb < , and under which conditions posi-
tivity of the resulting distribution function is to be expected.
So far, in all parameter regimes accessible to numerical
investigation it has been found that the distribution functions
have single maxima in velocity space and are not equal to, but
similar to Maxwell distributions. This is a very interesting
difference to the distribution function (34). It should be
emphasised, however, that only a part of all possible para-
meter combinations has been explored so far.

To illustrate the transformation method, we will present a
different transformation which also leads to force-free solu-
tions with 1plb < , but is mathematically less demanding. The
transformation we will use is simply

P P , 44zz zz
2y =( ) ( )

which leads to

P
P

P2
, 45zz

zz

ff

2

=¯ ( )

with transformed value Pff¯ along the force-free contour given by

P
P

2
, 46ff

ff=¯ ( )

i.e. the transformed plb will be half of the value of the original

plb . Hence starting with a value of 2plb < will lead to a
transformed 1plb < . Starting from the Pzz defined in
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equation (33) we get
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Solving equation (28) we obtain distribution functions of the
form
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so that N Ne i= and the macroscopic expression for Pzz¯ matches
the expression calculated from the vz

2 moment of the distribution
function (48).

One has to ensure that F 0s > for all pxs, pys and that
leads to certain restrictions on the parameter values if one also
wants to ensure that P 2ff < . For example, one has to have
b 3 2< and u vxi i

2
th,
2 has to be approximately smaller than

1.2. Contrary to the work by Allanson and co-workers

[45, 46], there is no issue with convergence of an infinite
series. A preliminary study of the distribution functions for
this case for 1plb < has only found distribution functions
which have a single maximum in velocity space and seem to
be quite close to Maxwellian distribution functions (see
figure 4 for an example). Further and more detailed investi-
gations will have to be carried out to see whether this is the
case for all parameter combinations with 1plb < or whether
there are cases with 1plb < and distributions functions with
multiple maxima in velocity space. We would like to
emphasise that while the transformation consists simply of
squaring Pzz, it is not the case that the distribution function is
simply squared as well. By trial and error, we have found
some examples of multi-peaked distribution functions for
transformed cases with 1plb > , but the plasma beta had to be
greater than approximately 2.5. Due to the larger number of
terms in the distribution function for the transformed case it is
not at all clear whether an analytical criterion such as
equation (35) for the original, untransformed case, can also be
found for the transformed case. Also, no immediate conclu-
sions for the distribution function of the transformed case can
be drawn from the fact that the distribution function for the
untransformed case can have multiple maxima. However, for
the case shown in figure 4, the parameter bs in equations (34)
and (35) corresponds to a s6 in equation (48). If we choose the
same parameters as used in figure 4 for the transformed case
in the original distribution function (34) (setting b as s6= ), we
would find that the original distribution function would also
only have a single maximum in vx. As stated above, the
possible parameter choices for the transformed case are to
some extent influenced by the fact that the distribution
functions have to be positive and one could speculate that this
restriction might play a role in the possible velocity space
structures of the distribution functions. It is definitely inter-
esting that so far all equilibrium distribution functions that
have been investigated for the cases of the force-free Harris
sheet magnetic fields with a 1plb < have a relatively simple
structure in velocity space, but it is too early to conclude that
this is always the case.

4. Discussion and conclusions

In this paper we have presented a general overview of rela-
tively recent work on the ‘inverse’ problem for collisionless
current sheet equilibria, focussing on one-dimensional force-
free equilibria in Cartesian coordinates. A natural question is
whether this can be extended to other geometries, e.g. rota-
tionally symmetric equilibria representing flux tubes and
some work in this direction has been undertaken [5, 6].

An important application for collisionless current sheet
models are plasma and magnetic field structures in planetary
magnetospheres and a large amount of work on collisionless
equilibria in general has been done in this area (see e.g.
[2, 8, 10, 29] for overviews and [5, 10, 47–51] for
recent work).

Collisionless plasma equilibria are also used as a starting
point for numerical investigations of dynamical plasma
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processes such as magnetic reconnection (e.g. [52]). In many
cases the Harris sheet with a constant guide field is used as the
underlying equilibrium but force-free magnetic field config-
urations have recently been used more often as starting point
for investigations, for example using particle-in-cell (PIC)
simulations. PIC simulations starting with linear force-free
fields and the corresponding exact equilibrium distribution
functions have been carried out by a number of authors
(see e.g. [39, 53–56]). Simulations have also been done for
the force-free Harris sheet, but usually with initial distribution
functions that are Maxwell–Boltzmann distributions shifted
by the macroscopic bulk flow of the particle species
(e.g. [57–63]. Other authors used the bi-Maxwellian self-
consistent equilibrium distribution function for linear force-
free fields (e.g [34, 35, 39]) to initialise their simulations
(e.g. [64, 65]). The equilibrium distribution function for the
force-free Harris sheet found in [31] has been used as initial
equilibrium for PIC simulations in [66] (see also [56]). It is
interesting that the results of most of these simulations with
regards to the properties of collisionless reconnection agree
despite the differences in the simulation set-up both regarding
the initial conditions and the simulation parameters.

On the other hand, the results by Allanson and co-
workers [45, 46] as well as the (preliminary) results for the
quadratic transformation presented in this paper seem to
suggest that there are equilibrium distribution functions for
the force-free Harris sheet in the regime with 1plb < that do
not deviate massively from shifted Maxwellian distribution
functions. This could explain why a set-up using shifted
Maxwellians might be justified, although this needs to be
investigated in more detail in the future.

One other interesting question that would be worth
addressing in the future concerns the non-uniqueness of the
‘inverse’ problem. In particular, in cases where several dis-
tribution functions are known for the same magnetic field
profile, it would be interesting to know which of those

distribution functions is in any way ‘preferred’. A first step
would be a linear stability analysis and one would intuitively
assume that, for example, multi-peaked distribution functions
would be subject to micro-instabilities. However, it would
also be of value to think about criteria which would help to
select equilibrium distribution functions according to, for
example, a (nonlinear) energy principle.
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