2,373 research outputs found

    Solubilities of pyrene in organic solvents: Comparison between chemical potential calculations using a cavity-based method and direct coexistence simulations

    Get PDF
    In this paper, we benchmark a cavity-based simulation method for calculating the relative solubility of large molecules in explicit solvents. The essence of the procedure is the accounting of the Gibbs energy change associated with an alchemical thermodynamic cycle where, in sequence, a cavity is created in a solvent, a solute is inserted in the cavity and the cavity is annihilated. The Gibbs energy change is equated to the excess chemical potential allowing the comparison of solubilities in different solvents. The results obtained using the cavity-based method are compared to direct large-scale molecular dynamics simulations performed using coarse-grained models for calculating the partition coefficient of pyrene between heptane and toluene. We demonstrate the applicability of this cavity-based technique under high pressure/temperature conditions.The authors gratefully acknowledge the generous funding and technical support for this work from BP Plc through the International Centre for Advanced Materials (ICAM) which made this research possible

    Classes of Multiple Decision Functions Strongly Controlling FWER and FDR

    Full text link
    This paper provides two general classes of multiple decision functions where each member of the first class strongly controls the family-wise error rate (FWER), while each member of the second class strongly controls the false discovery rate (FDR). These classes offer the possibility that an optimal multiple decision function with respect to a pre-specified criterion, such as the missed discovery rate (MDR), could be found within these classes. Such multiple decision functions can be utilized in multiple testing, specifically, but not limited to, the analysis of high-dimensional microarray data sets.Comment: 19 page

    Advanced magnetic resonance imaging and neuropsychological assessment for detecting brain injury in a prospective cohort of university amateur boxers

    Get PDF
    Background/aim:\textbf{Background/aim:} The safety of amateur and professional boxing is a contentious issue. We hypothesised that advanced magnetic resonance imaging and neuropsychological testing could provide evidence of acute and early brain injury in amateur boxers. Methods:\textbf{Methods:} We recruited 30 participants from a university amateur boxing club in a prospective cohort study. Magnetic resonance imaging (MRI) and neuropsychological testing was performed at three time points: prior to starting training; within 48 hours following a first major competition to detect acute brain injury; and one year follow-up. A single MRI acquisition was made from control participants. Imaging analysis included cortical thickness measurements with Advanced Normalization Tools (ANTS) and FreeSurfer, voxel based morphometry (VBM), and Tract Based Spatial Statistics (TBSS). A computerized battery of neuropsychological tests was performed assessing attention, learning, memory and impulsivity. Results:\textbf{Results:} During the study period, one boxer developed seizures controlled with medication while another developed a chronic subdural hematoma requiring neurosurgical drainage. A total of 10 boxers contributed data at to the longitudinal assessment protocol. Reasons for withdrawal were: logistics (10), stopping boxing (7), withdrawal of consent (2), and development of a chronic subdural hematoma (1). No significant changes were detected using VBM, TBSS, cortical thickness measured with FreeSurfer or ANTS, either cross-sectionally at baseline, or longitudinally. Neuropsychological assessment of boxers found attention/concentration improved over time while planning and problem solving ability latency decreased after a bout but recovered after one year. Conclusion:\textbf{Conclusion:} While this neuroimaging and neuropsychological assessment protocol could not detect any evidence of brain injury, one boxer developed seizures and another developed a chronic sub-dural haematoma.PJH is supported by a NIHR Research Professorship. VFJN is supported by a Health Foundation / Academy of Medical Sciences Clinician Scientist Fellowship. BJS holds a grant from the NIHR Brain Injury Healthcare Technology Co-operative. This study was supported through the Cambridge National Institute for Health Research (NIHR) Biomedical Research Centre (BRC). Control data were acquired with the support of the Medical Research Council as part of their Addiction Initiative (grant number G1000018), and a Pathfinder award from Medical Research Council (G0401099)

    Design principles of hair-like structures as biological machines

    Get PDF
    Hair-like structures are prevalent throughout biology and frequently act to sense or alter interactions with an organism's environment. The overall shape of a hair is simple: a long, filamentous object that protrudes from the surface of an organism. This basic design, however, can confer a wide range of functions, owing largely to the flexibility and large surface area that it usually possesses. From this simple structural basis, small changes in geometry, such as diameter, curvature and inter-hair spacing, can have considerable effects on mechanical properties, allowing functions such as mechanosensing, attachment, movement and protection. Here, we explore how passive features of hair-like structures, both individually and within arrays, enable diverse functions across biology. Understanding the relationships between form and function can provide biologists with an appreciation for the constraints and possibilities on hair-like structures. Additionally, such structures have already been used in biomimetic engineering with applications in sensing, water capture and adhesion. By examining hairs as a functional mechanical unit, geometry and arrangement can be rationally designed to generate new engineering devices and ideas

    Conservation of S20 as an Ineffective and Disposable IFNγ-Inducing Determinant of Plasmodium Sporozoites Indicates Diversion of Cellular Immunity.

    Get PDF
    Despite many decades of research to develop a malaria vaccine, only one vaccine candidate has been explored in pivotal phase III clinical trials. This candidate subunit vaccine consists of a portion of a single Plasmodium antigen, circumsporozoite protein (CSP). This antigen was initially identified in the murine malaria model and shown to contain an immunodominant and protective CD8+ T cell epitope specific to the H-2K d (BALB/c)-restricted genetic background. A high-content screen for CD8+ epitopes in the H2K b /D b (C57BL/6)-restricted genetic background, identified two distinct dominant epitopes. In this study, we present a characterization of one corresponding antigen, the Plasmodium sporozoite-specific protein S20. Plasmodium berghei S20 knockout sporozoites and liver stages developed normally in vitro and in vivo. This potent infectivity of s20(-) sporozoites permitted comparative analysis of knockout and wild-type parasites in cell-based vaccination. Protective immunity of irradiation-arrested s20(-) sporozoites in single, double and triple immunizations was similar to irradiated unaltered sporozoites in homologous challenge experiments. These findings demonstrate the presence of an immunogenic Plasmodium pre-erythrocytic determinant, which is not essential for eliciting protection. Although S20 is not needed for colonization of the mammalian host and for initiation of a blood infection, it is conserved amongst Plasmodium species. Malarial parasites express conserved, immunogenic proteins that are not required to establish infection but might play potential roles in diverting cellular immune responses

    Control of sand flies with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in Morocco

    Get PDF
    International audienceBackground: The persistence and geographical expansion of leishmaniasis is a major public health problem that requires the development of effective integrated vector management strategies for sand fly control. Moreover, these strategies must be economically and environmentally sustainable approaches that can be modified based on the current knowledge of sand fly vector behavior. The efficacy of using attractive toxic sugar baits (ATSB) for sand fly control and the potential impacts of ATSB on non-target organisms in Morocco was investigated. Methods: Sand fly field experiments were conducted in an agricultural area along the flood plain of the Ourika River. Six study sites (600 m x 600 m); three with ``sugar rich'' (with cactus hedges bearing countless ripe fruits) environments and three with ``sugar poor'' (green vegetation only suitable for plant tissue feeding) environments were selected to evaluate ATSB, containing the toxin, dinotefuran. ATSB applications were made either with bait stations or sprayed on non-flowering vegetation. Control sites were established in both sugar rich and sugar poor environments. Field studies evaluating feeding on vegetation treated with attractive (non-toxic) sugar baits (ASB) by non-target arthropods were conducted at both sites with red stained ASB applied to non-flowering vegetation, flowering vegetation, or on bait stations. Results: At both the sites, a single application of ATSB either applied to vegetation or bait stations significantly reduced densities of both female and male sand flies (Phlebotomus papatasi and P. sergenti) for the five-week trial period. Sand fly populations were reduced by 82.8% and 76.9% at sugar poor sites having ATSB applied to vegetation or presented as a bait station, respectively and by 78.7% and 83.2%, respectively at sugar rich sites. The potential impact of ATSB on non-targets, if applied on green non-flowering vegetation and bait stations, was low for all non-target groups as only 1% and 0.7% were stained with non-toxic bait respectively when monitored after 24 hours. Conclusions: The results of this field study demonstrate ATSB effectively controls both female and male sand flies regardless of competing sugar sources. Furthermore, ATSB applied to foliar vegetation and on bait stations has low non-target impact

    Natural Plant Sugar Sources of Anopheles Mosquitoes Strongly Impact Malaria Transmission Potential

    Get PDF
    An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595), lower survival rates (0.72 vs. 0.93), and prolonged gonotrophic cycles (3.33 vs. 2.36 days). The estimated number of females older than the extrinsic incubation period of malaria (10 days) in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73%) than in the sugar-poor site (48%). In contrast, plant tissue feeding (poor quality sugar source) in the sugar-rich habitat was much less (0.3%) than in the sugar-poor site (30%). More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens

    The development of path integration: combining estimations of distance and heading

    Get PDF
    Efficient daily navigation is underpinned by path integration, the mechanism by which we use self-movement information to update our position in space. This process is well-understood in adulthood, but there has been relatively little study of path integration in childhood, leading to an underrepresentation in accounts of navigational development. Previous research has shown that calculation of distance and heading both tend to be less accurate in children as they are in adults, although there have been no studies of the combined calculation of distance and heading that typifies naturalistic path integration. In the present study 5-year-olds and 7-year-olds took part in a triangle-completion task, where they were required to return to the startpoint of a multi-element path using only idiothetic information. Performance was compared to a sample of adult participants, who were found to be more accurate than children on measures of landing error, heading error, and distance error. 7-year-olds were significantly more accurate than 5-year-olds on measures of landing error and heading error, although the difference between groups was much smaller for distance error. All measures were reliably correlated with age, demonstrating a clear development of path integration abilities within the age range tested. Taken together, these data make a strong case for the inclusion of path integration within developmental models of spatial navigational processing

    Fat Mass and Obesity-Associated Gene (FTO) in Eating Disorders: Evidence for Association of the rs9939609 Obesity Risk Allele with Bulimia nervosa and Anorexia nervosa

    Get PDF
    Objective: The common single nucleotide polymorphism (SNP) rs9939609 in the fat mass and obesity-associated gene (FTO) is associated with obesity. As genetic variants associated with weight regulation might also be implicated in the etiology of eating disorders, we evaluated whether SNP rs9939609 is associated with bulimia nervosa (BN) and anorexia nervosa (AN). Methods: Association of rs9939609 with BN and AN was assessed in 689 patients with AN, 477 patients with BN, 984 healthy non-population-based controls, and 3,951 population-based controls (KORA-S4). Based on the familial and premorbid occurrence of obesity in patients with BN, we hypothesized an association of the obesity risk A-allele with BN. Results: In accordance with our hypothesis, we observed evidence for association of the rs9939609 A-allele with BN when compared to the non-population-based controls (unadjusted odds ratio (OR) = 1.142, one-sided 95% confidence interval (CI) 1.001-infinity; one-sided p = 0.049) and a trend in the population-based controls (OR = 1.124, one-sided 95% CI 0.932-infinity; one-sided p = 0.056). Interestingly, compared to both control groups, we further detected a nominal association of the rs9939609 A-allele to AN (OR = 1.181, 95% CI 1.027-1.359, two-sided p = 0.020 or OR = 1.673, 95% CI 1.101-2.541, two-sided p = 0.015,). Conclusion: Our data suggest that the obesity-predisposing FTO allele might be relevant in both AN and BN. Copyright (C) 2012 S. Karger GmbH, Freibur

    A new method to quantify and compare the multiple components of fitness-A study case with kelp niche partition by divergent microstage adaptations to Temperature

    Get PDF
    Point 1 Management of crops, commercialized or protected species, plagues or life-cycle evolution are subjects requiring comparisons among different demographic strategies. The simpler methods fail in relating changes in vital rates with changes in population viability whereas more complex methods lack accuracy by neglecting interactions among vital rates. Point 2 The difference between the fitness (evaluated by the population growth rate.) of two alternative demographies is decomposed into the contributions of the differences between the pair-wised vital rates and their interactions. This is achieved through a full Taylor expansion (i.e. remainder = 0) of the demographic model. The significance of each term is determined by permutation tests under the null hypothesis that all demographies come from the same pool. Point 3 An example is given with periodic demographic matrices of the microscopic haploid phase of two kelp cryptic species observed to partition their niche occupation along the Chilean coast. The method provided clear and synthetic results showing conditional differentiation of reproduction is an important driver for their differences in fitness along the latitudinal temperature gradient. But it also demonstrated that interactions among vital rates cannot be neglected as they compose a significant part of the differences between demographies. Point 4 This method allows researchers to access the effects of multiple effective changes in a life-cycle from only two experiments. Evolutionists can determine with confidence the effective causes for changes in fitness whereas population managers can determine best strategies from simpler experimental designs.CONICYT-FRENCH EMBASSADY Ph.D. gran
    corecore