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A B S T R A C T

Background/aim: The safety of amateur and professional boxing is a contentious issue. We hypothesised that
advanced magnetic resonance imaging and neuropsychological testing could provide evidence of acute and early
brain injury in amateur boxers.
Methods: We recruited 30 participants from a university amateur boxing club in a prospective cohort study.
Magnetic resonance imaging (MRI) and neuropsychological testing was performed at three time points: prior to
starting training; within 48 h following a first major competition to detect acute brain injury; and one year
follow-up. A single MRI acquisition was made from control participants. Imaging analysis included cortical
thickness measurements with Advanced Normalization Tools (ANTS) and FreeSurfer, voxel based morphometry
(VBM), and Tract Based Spatial Statistics (TBSS). A computerized battery of neuropsychological tests was
performed assessing attention, learning, memory and impulsivity.
Results: During the study period, one boxer developed seizures controlled with medication while another
developed a chronic subdural hematoma requiring neurosurgical drainage. A total of 10 boxers contributed data
at to the longitudinal assessment protocol. Reasons for withdrawal were: logistics (10), stopping boxing (7),
withdrawal of consent (2), and development of a chronic subdural hematoma (1). No significant changes were
detected using VBM, TBSS, cortical thickness measured with FreeSurfer or ANTS, either cross-sectionally at
baseline, or longitudinally. Neuropsychological assessment of boxers found attention/concentration improved
over time while planning and problem solving ability latency decreased after a bout but recovered after one year.
Conclusion: While this neuroimaging and neuropsychological assessment protocol could not detect any evidence
of brain injury, one boxer developed seizures and another developed a chronic sub-dural haematoma.

1. Introduction

The sport of boxing is an emotive and contentious subject. Many
medical and charitable organisations have called for an outright ban on
both amateur and professional boxing. Campaigners against boxing
have attracted widespread media coverage with articles in both the
written press and broadcasting arena (McCabe, 2009; British
Broadcasting Corporation (BBC), 1998). Counter-arguments from pro-
boxing organisations emphasise the intensive medical monitoring of

participants (ABAE, 2006) and a reduction in exposure to cumulative
head injury with modern regulations (Clausen et al., 2005). There are
also potential benefits of boxing on physical fitness and in providing a
positive, disciplined training environment, which can be particularly
valuable in socially deprived communities.

Despite the high level of scrutiny that boxing attracts, the scientific
evidence that underpins regulation is far from comprehensive
(Loosemore et al., 2007). A spectrum of brain injury has been described
in boxers, ranging from post-concussive syndrome to chronic traumatic
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encephalopathy (CTE) and rare instances of life-threatening haemor-
rhage (Hart et al., 2012). Despite these methodological shortcomings,
evidence suggests the development of CTE (or dementia pugilistica) in
retired ex-professional fighters from the historical era of regulations
(Roberts, 1969). Questions remain regarding why some participants
develop CTE while others do not, whether some participants are able to
tolerate repeated head injury, and if ultimately boxing has been made
safe enough through modern regulations to prevent brain injury.

Modern neuroimaging techniques are an attractive tool to help
improve our understanding of the pathophysiology involved in boxing
related brain injury. Initially MRI was only used in boxing with small
case series and limited analysis methods, which led to rather non-
specific findings (Levin et al., 1987; Jordan and Zimmerman, 1988;
Jordan and Zimmerman, 1990a; Haglund and Bergstrand, 1990;
Holzgraefe et al., 1992; Hähnel et al., 2008; Hasiloglu et al., 2011).
Increasingly sophisticated analysis methods of structural imaging data
have been developed enabling measurement of grey matter thickness
and density, subcortical volume changes, and white matter microstruc-
ture at the voxel level for the whole brain. Recent studies that have
applied these methods to participants with concussion from a variety of
different sports (predominantly American Football, Football, Ice Hock-
ey, and Mixed Martial Arts) have revealed convergent trends for
concussion exposure to be related to reduced cortical thickness
(Koerte et al., 2015; Albaugh et al., 2015; Tremblay et al., 2013),
smaller subcortical structure volumes (Bernick et al., 2015a; Singh
et al., 2014), and altered white matter diffusion metrics (Lancaster
et al., 2016; Meier et al., 2015; Stamm et al., 2015; Wilde et al., 2015;
Tremblay et al., 2014; Shin et al., 2014; Bazarian et al., 2014; Hart
et al., 2013; Virji-Babul et al., 2013). Additionally, these findings have
often corresponded to impaired neuropsychological function but appear
to be more persistent, suggesting a biomarker of longer-term structural
alteration. Limitations of these studies often include unmatched control
groups, cross-sectional or retrospective designs, and a lack of statistical
power. Nevertheless, modern neuroimaging techniques now have an
established sensitivity to detecting structural morphology alterations
related to sports concussion.

We set out to test whether signs of brain injury could be found to
develop over the short term in otherwise young healthy individuals
taking up amateur boxing for the first time. In order to test for brain
injury, we used an advanced magnetic resonance imaging (MRI)
protocol and extensive battery of computerized neuropsychological
tests. We planned to recruit participants from a local university amateur
boxing club and follow them with three assessments (baseline, post-
bout and one year follow-up) over approximately 18 months.

2. Materials &methods

2.1. Participants

Boxers were recruited from Cambridge University Amateur Boxing
Club (CUABC). Recruitment began at the start of the academic year
prior to commencing boxing training. All participants were members of
the Amateur Boxing association of England (ABAE) and had undergone
a satisfactory medical examination. Exclusion criteria included: any
prior participation in boxing; any participation in contact sports
(particularly martial arts or rugby) since age 18; any previous history
of neurological disease, neurosurgery or psychiatric disorder; any
history of claustrophobia; and any metal implants within the head or
neck. Demographic information collected included age, gender and
intelligence quotient (IQ) as measured by the National Adult Reading
Test (NART).

Contemporaneous MRI from control participants, who were not
participating in boxing, were included in a cross-sectional analysis at
baseline.

Ethical approval for the study was obtained from the Cambridge
Local Research Ethics Committee (REC number: 06/Q0108/161).

Control participants were recruited under ethical approvals from the
West London and Gene Therapy Advisory Committee National Research
Ethics Service committee (11/H0707/9), and the Cambridge Local
Research Ethics Committee (06/Q0108/303).

2.2. Assessment protocol

Following informed consent, assessments of boxers were performed
on three occasions. The first, baseline assessment was completed prior
to commencing sparring or training. The second, post-bout assessment
was within 48 h after the first competitive bout. The final, one-year
follow-up assessment was at approximately one year after the post-bout
assessment.

2.3. Imaging parameters

Imaging was performed a Siemens Tim Trio operating at 3T at the
Wolfson Brain Imaging Centre, University of Cambridge, UK.

A T1-weighted image was acquired with the MPRAGE sequence,
with parameters: acquisition matrix size 256 × 256; field of view
256 mm× 256 mm; 1 mm slice thickness; repetition time,
TR = 2300 ms and; echo time, TE = 2.98 ms.

Images sensitive to water diffusion were acquired in 63 non-
collinear directions with b = 1000s/mm2, and two images without
diffusion weighting, b = 0 s/mm2. Each image was acquired parallel to
anterior-posterior (AC-PC) commissural line using an echo-planar
imaging (EPI) sequence, with parameters: matrix size 96 × 96; field
of view 192 mm ×192 mm; 63 axial slices; slice thickness = 2 mm;
TR = 7800 ms, TE = 90 ms.

Prior to data analysis, MRI scans were viewed independently by two
consultant neuroradiologists, one blinded to the timing of the scan (i.e.
baseline, post-bout or one year follow-up), and the other aware of the
scan timing. Additional sequences available for clinical assessment
included gradient echo, FLAIR, and T2.

2.4. Neuroimaging analyses

Methods are described briefly below: full details are presented in the
Supplemental information. Cortical thickness was estimated in two
ways, with each method undertaking dissimilar approaches to image
processing of T1-weighted MRI. Automated volume based cortical
thickness estimation was performed with Advanced Normalisation
Tools (ANTS, http://www.stnava.github.io) (Avants et al., 2009;
Tustison et al., 2013; Das et al., 2009) while surface based estimation
of cortical thickness estimation was performed with the FreeSurfer
image analysis suite (http://surfer.nmr.mgh.harvard.edu/) (Reuter
et al., 2010; Ségonne et al., 2004; Fischl et al., 2002; Fischl et al.,
2004; Sled et al., 1998; Fischl et al., 2001; Ségonne et al., 2007; Dale
et al., 1999; Fischl and Dale, 2000; Dale and Sereno, 1993).

Estimates of grey and white matter volumes at each intracerebral
location were from T1-weighted MRI with FSL-VBM (http://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FSLVBM (Douaud et al., 2007)), an optimized VBM
protocol (Good et al., 2001) carried out with FSL tools (Smith et al.,
2004; Andersson et al., 2008a).

Voxelwise statistical analysis of white matter DTI metrics, specifi-
cally FA and MD data, was carried out using Tract Based Spatial
Statistics (TBSS) (Smith et al., 2006a), part of FSL (Smith et al., 2004;
Smith et al., 2006b; Andersson et al., 2008b; Rueckert et al., 1999)

2.5. Neuropsychological assessment

Participants were asked to perform a series of neuropsychological
tests from the Cambridge Neuropsychological Test Automated Battery
(CANTAB, Cambridge Cognition, Cambridge, United Kingdom; http://
www.cambridgecognition.com). The tests were computerized and run
on a Paceblade touch-screen computer with responses registered via
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touch-screen or a button box. Participants were given the tests outlined
in Table 1, in the order in which they are listed.

2.6. Statistical testing

Case-control differences at baseline in grey and white matter
volume were initially tested across the entire cerebral cortex and
cerebellum (i.e. whole-brain). Then, within the group of boxers, acute
changes in grey and white matter volumes, FA and MD, and the two
estimates of cortical thickness were tested by paired comparison of data
acquired at baseline and post-bout assessments. Long-term changes
were similarly made by comparison of data acquired at baseline and
one-year (post-bout) follow-up.

All imaging data was analyzed using a voxelwise general linear
model (GLM), unpaired for baseline case-control comparisons, and
paired for within-group longitudinal comparisons. Statistical inference
was with the Randomize software using permutation-based (10,000
permutations), non-parametric testing and threshold free cluster en-
hancement (TFCE), correcting for the multiple comparisons associated
with this mass-univariate approach by the family wise error rate
(FWER). The corrected threshold for significance was p < 0.05. To
undertake testing on cortical thickness estimated by FreeSurfer, surface
ribbons were converted to volumes.

Baseline psychological data from the neuropsychological assess-
ments were compared to the internal normative database of CANTAB
(involving 3000 healthy volunteers matched for gender and age) or
from other publications (Turner et al., 2003; Müller et al., 2013).
Longitudinal testing within the group of boxers for acute and long-term
changes were analyzed with SPSS version 10.0 for Windows (SPSS Inc.,
Chicago IL) with the same approach as for the imaging data; namely,
baseline compared to post-bout, and baseline compared to one-year
follow-up. The threshold for significance was p < 0.05, two-tailed.

3. Results

3.1. Participants

A total of 30 boxers were recruited of which 10 (1 female, Mean age
was 22.0 ± 2.3 years) completed the final assessments, and were
included in the subsequent analyses. Reasons for withdrawal are
illustrated in the flow chart in Fig. 1. Logistical reasons included
participants that were lost to follow-up as well as others that had
completed their studies in Cambridge and had moved away, and thus
were unavailable for follow-up. Baseline demographic data is displayed
in Table 2. The mean time between baseline and post-bout assessments
was 37.8 ± 35.8 days (range: 5–95 days), and between the post-bout
and one-year follow-up assessments was 460.6 ± 102.9 days (range:
362–628 days).

Structural T1-weighted MRI were contemporaneously acquired

from 10 control participants (1 female) with similar mean age of
22.0 ± 2.3 years.

3.2. Clinical events

Two clinical events occurred in the study period. One boxer
developed seizures that were successfully controlled with anti-convul-
sants, while another boxer developed a chronic subdural haematoma
requiring drainage. Both events occurred in the interval between the
first fight and one-year follow-up, during a period when neither of them
was actively engaged in sparring, nor had they recently participated in
a bout. Although both participants stopped boxing, they both com-
pleted their one-year follow-up scans. Subsequently their management

Table 1
Neuropsychological assessments.

Test Measures Outcome measures Population norm (mean,
SD)a

Sample (mean, SD)

Rapid visual information processing (RVP) (Park
et al., 1994)

Sustained attention • RVP A′ 0.94, 0.03 0.92, 0.04

Paired associates learning (PAL) (Blackwell et al.,
2004)

Learning and memory • Total errors 0.92, 1.19 1.92, 3.05

Stop signal task (SST) (Aron et al., 2003) Processing speed
Response inhibition

• Go reaction time

• Stop signal reaction time
329, 61 ms
211, 49 ms

426, 55 ms
161, 33 ms

One touch stockings of Cambridge (OTS) (Owen
et al., 1995)

Planning
Latency to problem solve

• Mean attempts to correct

• Latency to correct response
1.24, 0.01
241.20, 77.39 ms

7.70, 1.79
179.31, 60.70 ms

Digit span (Lezak et al., 1995; Wechsler, 1981) Verbal working memory capacity
Verbal working memory and
reordering

• Forward score

• Backward score
9.75, 1.83
8.67, 2.01

9.60, 2.62
8.65, 2.41

a Population norms are not matched for NART.

Fig. 1. Recruitment flow chart. Reasons and numbers for the withdrawal of study
participants prior to each assessment time point. Logistical reasons includes participants
that finished university and moved away, therefore they were unable to return for
assessment prior to the study closing.

Table 2
Participant demographics. Values given are means (standard deviation).

Recruited (n = 30) Included in analysis
(n = 10)

Age 22.2 (2.2) years 22.0 (2.3) years
Gender 28 male: 2 female 9 male: 1 female
Intelligence quotient (IQ),

NART
117.4 (5.9) 119.0 (3.8)

M.G. Hart et al. NeuroImage: Clinical 15 (2017) 194–199

196



was overseen locally and no further long-term follow-up data is
available. In both participants, all neuroimaging and neurocognitive
data was normal, both prior and subsequent to the clinical events, apart
from extra-cerebral post-surgical artefacts observed at time point 3 in
the participant who had undergone drainage of the subdural haemato-
ma.

3.3. Clinical MRI reporting

No structural brain abnormalities were detected on MRI from the
boxers over the study period.

3.4. Neuroimaging analyses

No significant whole-brain, case-control differences changes were
observed at baseline for grey or white matter, or estimates of cortical
thickness from FreeSurfer or ANTS. Similarly, no significant whole-
brain, acute or longer-term longitudinal differences in the boxers were
observed with the neuroimaging estimates of grey and white matter, FA
or MD, or estimates of cortical thickness.

3.5. Neuropsychological assessments

Participants performed, on average, equal to, or better than
equivalent population norms (Table 1), which is consistent with a
sample of university undergraduates compared to the general popula-
tion.

Paired t-tests between baseline and post-bout assessments were
significant for the Rapid Visual Information Processing (RVP) A′ (t(9)
= 2.3, p = 0.050) and One Touch Stockings of Cambridge (OTS)
latency to correct response (t(9) = 4.44, p = 0.002), and between
baseline and one year follow-up assessments for OTS latency to correct
response (t(9) = 2.59, p = 0.016); Fig. 2a and b. All other tests were
non-significant. A Bonferroni correction of the 16 tests undertaken
renders only the OTS latency to correct response at baseline and post-
bout assessments as significant.

4. Discussion

Out of 10 boxers followed up for over 1 year, one boxer developed
seizures and another developed a chronic subdural haematoma requir-
ing neurosurgical drainage. However, there was no evidence of acute or
long-term brain injury using measures of grey and white matter
volume, cortical thickness, or white matter microstructure.
Neuropsychological assessment indicated that the sample followed
were within (or indeed exceeded) normal ranges at baseline, compared
to population norms (Table 1). Subsequently, attention tended to
increase over all time points while planning and problem solving
latency decreased after a bout, but showed some recovery at one-year
follow-up.

The neuropsychological findings could be interpreted as successful
boxing improving concentration in order to avoid being hit by the
opponent or as potential beneficial effects of exercise (Sahakian, 2014).
Alternatively, they may reflect a practice effect of repeating the tasks.
Unfortunately our study design, which did not include longitudinal
control group data, is unable to resolve this issue. Overall these findings
should be taken in the context of a lack of changes in the neuroimaging
data and the majority of the neuropsychological tasks.

4.1. Neuroimaging in sport

Combining advanced neuroimaging and neuropsychological testing
has played a significant role in improving our understanding of
repetitive brain injury during sport. The majority of research has
involved participants in American football and ice hockey, while
neuroimaging methods have included diffusion tensor and kurtosis

imaging, magnetic resonance spectroscopy, task based and resting state
functional MRI, transcranial magnetic stimulation, and electroencepha-
lography. Such studies complement post-mortem reports (the tradi-
tional workhorse for understanding cumulative effects of brain injury)
by allowing non-invasive, affordable longitudinal follow-up and corre-
spondence with neuropsychological function in vivo.

4.2. Neuroimaging in boxing

Research into boxing related brain injury has spanned over 30 years
and included a variety of neuroimaging techniques. Findings have
generally been mixed with many studies failing to detect significant
signs of brain injury or only finding non-specific abnormalities such as
cerebral atrophy or a cavum septum pellucidum (Levin et al., 1987;
Jordan and Zimmerman, 1988; Haglund and Bergstrand, 1990;
Holzgraefe et al., 1992; Hähnel et al., 2008; Hasiloglu et al., 2011;
Jordan and Zimmerman, 1990b). However, the use of DTI allowed the
first consistently demonstrable abnormalities in professional boxers.
Initially findings highlighted deranged whole brain average diffusivity
(Zhang et al., 2003), but subsequently localized changes were identified
in the corpus callosum (Zhang et al., 2006), and ultimately multivariate
methods demonstrated additional changes in the inferior temporal
lobes and internal capsule too (Chappell et al., 2008). These studies
have served as a proof of principle that modern advanced neuroimaging
methods have sensitivity to detect hitherto unidentified pathological
findings.

One of the challenges of detecting subtle neuroimaging abnormal-
ities is to determine what neuropsychological inference can be made.
Recently regional DTI metrics (specifically FA and MD) have been
found to correlate with neuropsychological function (declarative mem-

Fig. 2. Neuropsychology findings: Mean and standard deviations at each assessment for
(top) rapid visual information processing (RVP) A′ and (bottom) One Touch Stockings of
Cambridge (OTS) latency to correct response. *p < 0.05 and **p < 0.01.
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ory and reaction times) and boxing exposure (years of boxing) in a
small cohort study, but corrections for multiple comparisons were not
applied (Wilde et al., 2015). The large Professional Fighters Brain
Health Study from Las Vegas has generated numerous publications in
their large cohort of boxers and mixed martial art fighters. This study
also found DTI metrics to correlate with neuropsychological function
(reaction times) (Bernick et al., 2015b) and boxing exposure (number of
knockouts) (Shin et al., 2014). Additionally, volumetric analysis of
subcortical structures (specifically the caudate and thalamus) was
found to correlate with cognitive impairment, slower processing, and
fight exposure (Bernick et al., 2015a). Together these findings suggest
that the findings identified with advanced neuroimaging methods are
biologically and clinically meaningful, as well as reproducible.

A significant methodological concern with all these studies is case
selection bias, with studies typically focusing on retired professional
boxers with gross neuropsychological deficits, rather than including a
representative contemporary consecutive series of boxers. Other limita-
tions of the existing literature include performing cross sectional rather
than longitudinal analysis and a lack of objective definitions for
reporting abnormalities.

4.3. Strengths of this study

This study used high-resolution MRI of brain structure, and multiple
established-methods for detecting local changes in grey and white
matter and cortical thickness, as well as DTI to depict measures of white
matter microstructure. All these methods have been used extensively to
characterise a wide variety of neurological and psychiatric disorders.
For each of these methods the statistical methodology for inference was
equivalent, and appropriate corrections were made to the threshold for
significance to account for multiple comparisons. In short, a rigorous
approach to image processing and statistical testing did not reveal any
consistently located longitudinal changes in brain structure of a small
group of amateur boxers who were not significantly different from non-
boxing controls at baseline.

A major strength of our study is the prospective cohort design,
which is unique within boxing studies, and provides a valuable
opportunity to monitor for brain injury developing over time. This
has the dual benefit of helping to establish a causal link between
imaging changes and boxing exposure while additionally it can be used
to improve the safety of the participants if it detects early signs of brain
injury. Recruiting from university boxing club has numerous advan-
tages including: enrolment of previously healthy participants that had
not boxed prior to entering the study; aids in establishing uniformity
baseline demographics; and minimises confounding factors such as
training regimes and competition intensity.

4.4. Potential limitations of the study design

Difficulties were encountered in the recruitment of boxers from a
university amateur boxing club and included: limited follow-up due to
participants finishing university or stopping boxing due to exams;
possibly a reduced intensity of fighting and training; concordant
changes in brain development and structure during the typical age
range. On average, we managed to recruit approximately 10 new boxers
per year, with around half of these continuing the sport and training
regularly. More detailed recording of fighting demographics – such as
frequency of training, number of fights, number of punches taken and
total knockouts – would have been useful to correlate imaging changes
with exposure to injury. Additionally novel MRI sequences, such as
susceptibility weighted imaging, may offer improved sensitivity to
detecting micro-haemorrhages.

Absence of evidence is not, in this case, evidence of absence of
abnormalities in our cohort. False-negative errors may have arisen due
to the small sample, the young age and good health of our participants
over a relatively short follow-up period, or that our cohort did not

sustain many blows to the head during training or bouts, although this
was not directly recorded. Furthermore, the imaging methods used for
statistical comparison assume the co-location of any changes, whereas
brain injury can vary depending on the type of impact received.

5. Conclusion

Our method of establishing an advanced MRI protocol together with
automated neuropsychological testing provides a novel contribution to
the debate on boxing safety. While we did not find neuroimaging or
neurocognitive evidence of brain injury in amateur boxers with this
protocol, the clinical findings raise concern with one participant
developing a chronic subdural haematoma requiring drainage and
another developing seizures. The safety of amateur boxing requires
further investigation.
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