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Hair-like structures are prevalent throughout biology and frequently act to

sense or alter interactions with an organism’s environment. The overall

shape of a hair is simple: a long, filamentous object that protrudes from the

surface of an organism. This basic design, however, can confer a wide range

of functions, owing largely to the flexibility and large surface area that it

usually possesses. From this simple structural basis, small changes in geo-

metry, such as diameter, curvature and inter-hair spacing, can have considerable

effects on mechanical properties, allowing functions such as mechanosensing,

attachment, movement and protection. Here, we explore how passive features

of hair-like structures, both individually and within arrays, enable diverse

functions across biology. Understanding the relationships between form and

function can provide biologists with an appreciation for the constraints and

possibilities on hair-like structures. Additionally, such structures have already

been used in biomimetic engineering with applications in sensing, water

capture and adhesion. By examining hairs as a functional mechanical unit,

geometry and arrangement can be rationally designed to generate new

engineering devices and ideas.
1. Introduction
Despite the incredible diversity of organism structure, elongated appendages

are found across the biological world and hairs represent a major structural

theme in biological design. Hairs, cilia, whiskers, trichomes, awns and antennae

all share a common overall form despite occurring in species as distantly related

as cockroaches, rats and cacti. Though these structures are known by many

biological names, we refer to them here as ‘hairs’ to describe a flexible, high

aspect ratio (length : diameter at least 4 : 1 but often much larger), appendage

that emerges from the surface of an organism.

Frequently, hairs play a key role in enabling and enhancing environmental

interactions. Here, we explore how the flexibility and taper of hair-like structures,

including antennae, whiskers and trichomes of organisms such as insects, bats,

seals and carnivorous plants (figure 1) act as important environmental sensors

of mechanical and auditory signals. We also examine how the array arrangement

of filamentous tarsi, feather barbs and trichomes enable adhesion, motion, protec-

tion and insulation of animal and plant surfaces. Small variations in geometry and

arrangement can dramatically alter the nature of a hair’s interactions with the

environment, allowing versatile biological machines. Although one might argue

that they are common because they are simple, it is not inevitable that organisms

will make such structures. For example, the high aspect ratio (length/diameter) of

hairs makes them potentially breakable due to the narrow length scale of their

diameter (whiskers, for example, frequently break [6]). Nevertheless, hairs occur
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Figure 1. Biological hairs. (a) Scanning electron micrograph montage of a trigger hair of the Venus flytrap. Reprinted with permission from [1], copyright & 1970,
John Wiley and Sons. (b,c) Finite-element simulation of Arabidopsis trichomes with differing material properties. Warmer colours indicate higher strain energy
density. Reprinted with permission from [2], copyright & 2016 American Chemical Society. (d ) From top to bottom: harbour seal (Phoca vitulina) whisker
dorsal view, harbour seal whisker frontal view, California sea lion (Zalophus californianus) whiskers frontal view, California sea lion whisker dorsal view. Reprinted
with permission from [3], copyright & 2010 Company of Biologists. (e,f ) Solutions of a mathematical model of a rat whisker. Reprinted from [4] under Creative
Commons Attribution License. (g,h) Environmental scanning electron microscope images of the cactus awn (Syntrichia caninervis) with water droplets forming (g)
and dry (h). Boxes in (g) indicate areas of high barb density. Reprinted with permission from [5], copyright & 2016 Springer-Nature.
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frequently in biology with wide range of functions. Structural

features relevant to hair function include length, diameter,

aspect ratio, taper, roughness, orientation, curvature, spacing

between hairs and the arrangement of hairs in complex

arrays. Here, we review how these structural features of

hair-like appendages enable their function.
2. Flexibility
2.1. Flexibility in mechanical sensing
The ability to flex and bend (i.e. mechanical stiffness) is a key

property of hairs that, in many cases, is essential for function.

Most biological mechanical sensors require flexibility and

this is frequently directed towards specific sensory regions

to enhance sensitivity. Additionally, deflection characteristics

can be tuned by surrounding structures and media to generate

appropriate flexural responses for specific purposes.

A model system for the study of mechanosensing via hairs

are the vibrissae, or whiskers, of rats (figure 1e,f) [7,8]. Rats use

whiskers to detect the presence and determine textural proper-

ties of close-range objects. For example, rats can detect small

(5–6%) changes in the aperture of a gateway by bending whis-

kers against its frame [9]. Active (muscle-actuated) movement

is not required for sensing objects though active whisking

(movement back and forth) greatly aids accuracy [10].

In addition to object location, rat whiskers may be used to

sense airflow [11,12] and can help rats distinguish between

varying surface textures. For surface discrimination ‘stick–

slip’ events (figure 1e), in which a whisker hits an object,

bends, then slides off, have been found to be particularly

important. Slipping off an object provides a sudden sharp

mechanical signal, which can be more easily distinguished

from background noise than graded inputs [4,8,13].
Using both natural rat whiskers and artificial metal

‘whiskers’ (wires), Hipp et al. [14] found that the greatest

differences in texture between surfaces can be detected by

analysing the total power in a whisker signal (i.e. the combined

amplitudes of vibrissal oscillations) as well as the power spec-

trum of the frequency of the whisker. Therefore, the ability to

bend and oscillate in response to mechanical stimulation is

important for whisker function. These operation modalities

are widely used in electro-mechanical sensors, such as

microbalances, seismometers, accelerometers and gyroscopes.

Furthermore, a large number of sensing devices using artificial

whiskers have been designed and constructed (reviewed in

[15]), such as steel whiskers attached to strain gauges capable

of determining the topography of a face and whiskers on

underwater robots capable of sensing water flow velocities

[16,17]. Whisker-based sensors have even been designed for

use in heart surgery to detect displacement of the heart’s sur-

face as it beats [18]. Many of these have been quite successful

and demonstrated that a range of mechanical arrangements,

whisker materials and signal transduction methods are capable

of object detection and assessment of surface topography

(e.g. [12,16–24]). More generally, the stiffness or flexibility of

nano- and microfabricated hairs (i.e. pillars) has been used

for a variety of sensing applications. For example, arrays of

nanopillars have been used to non-invasively study nuclear

mechanics of live cells [25].

In the plant kingdom, one of the most famous examples

of trichomes as mechanical sensors are the trigger hairs

of the Venus flytrap, Dionaea muscipula, which snaps shut

when stimulated (figure 1a). Darwin described the structure

of the mechanosensitive trigger hairs:
The sensitive filaments are formed of several rows of elongated
cells, filled with purplish fluid. They are a little above the 1/20 of
an inch in length; are thin and delicate, and taper to a point [26].

http://rsif.royalsocietypublishing.org/
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If two or more mechanical perturbations of the trichomes are

detected within approximately 20 s, an electrical signal is

propagated across the trap and it snaps shut [27–29].

Interestingly, the bending of the trigger hairs can be stimu-

lated by any mechanical force and several researchers have

noted that strong gusts of wind and drops or streams of

water can elicit bending and trap closure [27,30,31]. The mini-

mum forces required to initiate bending and trap closure have

not yet been quantified but such studies might yield informa-

tive results on the sensitivity of the system. Structurally,

trigger hairs consist of elongated cells forming a tapered fila-

ment (figure 1a). This sits on top of a constricted region

surrounded by vertical bands [1]. Mozingo et al. [1] hypo-

thesized that the constricted podium localizes bending to the

region corresponding to the location of the sensory cells that

propagate an action potential [32].

The use of trichomes as mechanosensors is not a special

case of the Venus fly trap. The branched, unicellular trichomes

of Arabidopsis thaliana (figure 1b,c) have recently been reported

to act as mechanosensitive switches to transduce mechanical

stimuli into physiological signals [2,33]. Much like the whisker,

the Arabidopsis trichome passively transmits mechanical force

to cells at its base [33]. The skirt cells that surround the base

of the trichome exhibit oscillations in cytosolic calcium ions,

which may act to transduce the signal for physiological or

developmental responses [33]. With compression or bending,

a pliant zone towards the base of the shaft, close to the sur-

rounding cells, bulges and eventually buckles indicating that

force is focused at this region (figure 1b,c), as was previously

hypothesized for the Venus flytrap trichome.

The ingenious use of trichomes as mechanosensors

transducing an external mechanical stimulus into a specific
mechanical movement of the structure has not yet been repli-

cated in engineering. Researchers have so far managed to use

environmental changes such as pH and temperature to snap

between shapes [34] or light to trigger the snapping motion

of a micro-gripper made of a liquid crystal elastomer [35].
2.2. The impact of aspect ratio on flexibility
As a hair is a long, narrow structure that is typically sup-

ported at only one end, its mechanical properties can be

understood by applying the solid and fluid mechanical

principles of beams. In the Euler–Bernoulli theory of

beams, the beam is treated as effectively one-dimensional

and elastic (i.e. there is a linear relationship between the

stress and strain). Such assumptions are valid as the beam’s

aspect ratio (length/diameter) tends to infinity. Real beams,

however, have a finite aspect ratio leading to geometric non-

linear effects such as shear and transverse deformations,

which tend to stiffen the structure. The second-order effects

are important for beams with aspect ratios less than about

10 [36,37], and are not captured by Euler–Bernoulli theory.

Instead, Timoshenko beam theory may be used to model

such beams. The aspect ratio of biological hairs typically

ranges from 10 to 1000 (figure 2), hence these second-order

effects are generally negligible, and Euler–Bernoulli can

be used.

To shed light on the relationship between the aspect ratio

of hairs and their ability to bend, we collated data from a

range of sources on the geometrical and material properties

of more than 40 biological hairs (figure 2).

The flexural rigidity of an idealized beam is determined

by the product of its material properties (E, the ratio of

http://rsif.royalsocietypublishing.org/
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stress to elastic strain or Young’s modulus) and second

moment of area (I ). E may vary by 3 orders of magnitude

(1021 to 10 GPa) for biological materials [38] but is less vari-

able than I, which is defined by the geometry of the structure.

For a circular cross-sectioned beam with diameter (d ), I is

given by

I ¼ pd4

64
:

Hence, I is particularly sensitive to the diameter of the hair.

A cylindrical beam interacts with its surroundings based

on its geometry, diameter d, length L and material properties,

E. Interactions are also influenced by the fluid flow in which

the beam is immersed in, with density r, dynamic viscosity m

and speed U. As there are many physical quantities relating

to this interaction, we group these into non-dimensional

parameters. One such parameter is the Reynolds number (Re)

Re ¼ rU2

mU=d
¼ rUd

m
,

which represents the ratio of inertial (rU2) to viscous forces

(mU/d ) in the fluid. Another non-dimensional parameter is

the Cauchy number (CY1), which characterizes the degree of

deformation of the beam in the flow [39]:

CY1 ¼
rU2d L3

2EI
:

Note that in this definition of CY1, it is assumed that

inertial forces dominate (Re� 1), which is reasonable for

many biological flows. This scaling is not valid, however,

when Re is small compared with unity. In this case, viscous

forces dominate the inertial forces in the fluid (Re� 1), and

the Cauchy number is instead given by

CY0 ¼
m UL3

2EI
:

Hence, in general the Cauchy number is calculated as

follows:

CY ¼
m UL3

2EI
for Re , 1

rU2d L3

2EI
for Re . 1:

8>><
>>:

As CY characterizes the bending of a filament in a fluid

flow, little bending occurs for low values of CY and bending

is appreciable as CY increases above 1.

In compiling information on aspect ratio (L/d ) of hairs and

their tendency to bend (figure 2; electronic supplementary

material), the velocity U was taken to be the typical walking

or swimming speed of the animal or typical ambient flow for

plants (2 m s21) [40]. Geometrical descriptions and material

properties of hairs were obtained from the literature and

mean or median values used where ranges were provided

(see the electronic supplementary material). For the hairs

included here, Re varied between 1:5� 10�3 and 1:5 � 103.

Figure 2 illustrates the close relationship between aspect

ratio (L/d) and Cauchy number, demonstrating that increased

bending is observed under ambient flow conditions when

aspect ratio is large. Hairs involved in mechanical sensing,

such as whiskers, antennae and bat and spider hairs occupy

a part of the graph where the aspect ratio is greater than 100

and CY is generally equal to or greater than 1. This indicates

that flexibility, conferred in part by a high aspect ratio, is crucial
for mechanical sensing. Furthermore, although both Young’s

modulus and fluid flow environments vary for these hair-

based sensors, the aspect ratio appears to be optimized to

ensure appreciable bending occurs.

An exception, in which a very low aspect ratio and Cauchy

number is associated with a hair involved in mechanical sen-

sing, is the vertebrate kinocilium (figure 2) and the adjacent

stereocilia that comprise part of the auditory detection

system of the inner ear, lateral line and vestibular acceleration

detection. The inherent inflexibility of these structures is due

in part to the high viscosity of the surrounding endolymph

and necessitates active (energy-requiring) amplification of

mechanical signals, which has been observed experimen-

tally [41]. Mathematical models of stereocilia behaviour have

indicated that coupling hair cells to membranes or being

surrounded by a fluid applies a mechanical load to the hair

bundles [42–44]. These accessory membranes or surround-

ing fluids can modulate the effective hair bundle stiffness,

damping, mass and force. Three states are possible depending

on the external force applied and the effective stiffness of

the system: hair bundles may be monostable, bistable switches

or may spontaneously oscillate [44]. The transduction mechan-

ism of stereocilia has inspired a range of cantilever-based

acoustic sensors with aspect ratios of up to 700 to enhance

sensitivity [45–50].

By contrast, for some hairs high rigidity is important. This

can be seen for fruit hooks and plastron hairs (see §§6.1, 6.3

and 7.4) for which the aspect ratio is typically less than 100

and CY is less than 1. Fruit hooks (figure 3) must be rigid

to stay attached to animal fur and plastron hairs (figure 4b)

must maintain respiratory air bubbles in diving aquatic

insects withstanding significant external pressure.

Alternatively, low aspect ratio and flexibility can still be

associated with mechanical sensing, but in response to forces

greater than the typical ambient fluid flow. Trichomes, the

hairs found on the surfaces of plant stems and leaves, are fre-

quently used to detect crawling insects. Though the Cauchy

http://rsif.royalsocietypublishing.org/
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numbers of trichomes in figure 2 indicate minimal bending

under ambient flow conditions, Voigt & Gorb [57] suggest

that mirid bugs walking on Roridula gorgonias plants might

bend the tips of 0.33 mm long trichomes by 0.25–1 mm.

Furthermore, the assumption that hairs are cylinders with

uniform linear material properties is not always reasonable.

Liu et al. [2] found that for Arabidopsis trichomes (figure 1b,c)

the elasticity of the cell wall is not uniform across the cell.

Young’s modulus at the base is 20% that of the tips of the tri-

chomes. The graded elasticity of the trichome cell wall

appears to enhance the focusing of stress onto the basal pliant

zone, leading to greater deformation and buckling at smaller

loads. This indicates that heterogeneous cell wall stiffness

may enhance the sensitivity of the trichome to small mechanical

forces, despite the low aspect ratio [2]. Additionally, biological

materials that form hairs frequently exhibit nonlinear relation-

ships between mechanical properties. For instance, the

stiffness of the hair bundles in the mouse cochlea is highly non-

linear even at nanometric displacements (0–20 nm) suggesting

that nonlinear properties may be tailored to the specific

mechano-acoustic transduction process [58].
3. Length
3.1. Hair length in mechanical sensing
The size of a hair is an important determinant of its function.

Hairs of appropriate lengths can be suitable for mechanical

sensing by acting as harmonic oscillators. In this case, the

hair structure is typically fixed at one end and free to move

at the other. Therefore, it can be approximated as a cantilever

beam with natural resonant frequency of oscillation, f0,

determined by d, L, E and mass density rm.

f0 ¼ 0:162

ffiffiffiffiffiffi
E
rm

s
d
L2
:

Mosquitoes exploit the mechanical oscillation of their

antennae to detect sound. Oscillation of the main flagellum

occurs in response to the acoustic pressure experienced and

is transmitted to sensory nerves at the base of the antenna,

known as Johnston’s organ. The male antennae, which are

1.6 mm long, are precisely tuned to resonate at the same fre-

quency as the flight sounds of the female. Females, however,
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have 2 mm long antennae and resonate at a different resonant

frequency [59,60]. Similarly, in rat whiskers, differential res-

onance has been observed in vibrissae of different lengths

along the whisker array [61]. This is reported to occur as

whiskers slide along surfaces of different roughness [8,13].

A number of species use flexible hairs to detect changes in

surrounding fluid flow. A boundary layer of fluid exists

around all body surfaces, where velocity slows down due

to the presence of the body, as flow velocity must be zero

on the body surface. To maximize the receptivity of the

hair, the length of the hair is typically smaller, or of the

order of magnitude of the boundary layer thickness. For

the wind-sensing hairs of arthropods and bats, lengths of

the hairs appear to be optimized to detect changes in fluid

flow near their bodies [62–64]. Devarakonda et al. [63] theor-

etically compared the bending amplitude of filiform hairs of

air-dwelling arthropods and water-dwelling crustaceans. The

forces on a hair in water are higher than on the same hair in

air. On the other hand, the thickness of the boundary layer is

smaller in water as the kinematic viscosity of water is 15

times lower than that of air. Owing to the smaller boundary

layers and larger drag force per unit of length, aquatic crus-

taceans have shorter hairs but retain the same mechanical

sensitivity as the longer hairs of air-dwelling spiders [63].

Devarakonda et al. also noted that the difference in hair

motion is mostly due to the added mass, which is the

additional inertia of the hair due to the surrounding layer

of fluid that oscillates with the hair.

The mechanosensing cercal filiform hairs of the

cricket also vary in length (30–1500 mm) and have different

optimal frequencies [65–69]. Recently, Steinmann et al. [69]

proposed a model of cricket hair deflections suggesting that

short hairs respond quickly to fluid motion but require a

large force to reach a threshold deflection for signal transduc-

tion. By contrast, long hairs have greater inertia so react more

slowly to fluid flow but reach the threshold deflection more

easily [69]. Hairs of varying lengths can thus allow optimal

sensitivity to the varying air flow that is generated when a

predator attacks.

Several studies have taken inspiration from cricket hairs to

develop microfabricated flow and wind sensors. For instance,

Argyrakis et al. [70] fabricated silicon micro-cantilevers

together with a strain gauge, connected to a neuron electronic

circuit. When actuating the cantilevers with a ‘wind stimulus’

the devices produce an electrical output voltage proportional

to the intensity of the air flow.

3.2. The influence of hair length on surface area
Adding hairs onto a surface leads to a significant increase in

surface area. In addition, surface area is enhanced as hair

length increases. By approximating hairs as cylindrical vertical

pillars, and dividing a planar surface into hexagonal unicells,

surface area enhancement factor (the ratio between surface

area with pillars, S, and initial planar surface area, S0), for pil-

lars with radius r, length, L and hexagonal unicell size, a, can be

calculated as follows [71]:

S0

S
¼ 1þ 2L

r
p:

where

p ¼ 3pr2

ð3
ffiffiffi
3
p

=2Þa2
:

So for pillars with r ¼ 100 nm, L ¼ 6 mm and density,

p ¼ 50%, a 61-fold increase in surface area is achieved.

Enhancement of surface area is particularly important for

nutrient uptake and chemosensing in many species, such as

the root hairs of plants, the villi of the human gut and the

antennules of crustaceans [72–77]. The root hairs of different

barley cultivars have different lengths (0.52 mm versus

1.1 mm) but the same diameter (12 mm) leading to an approxi-

mate doubling in surface area, which correlates with increases

in phosphorus acquisition [77]. Similarly, in the lining of the

human small intestine, protruding villi and microvilli lead to

6.5- and 13-fold increases, respectively, in the total surface

area compared with a hypothetical smooth tract [73].

For a cylinder with fixed volume and one free end, the

surface area (SA) is related to length (L) by

SA ¼ 2
ffiffiffiffiffiffiffiffiffiffi
pVL
p

þ V
L
:

While surface area becomes infinitely large with both

small and large lengths (figure 5a), long hairs are generally

more practical for two reasons. Firstly, very short cylinders

(effectively disc-shaped) are high in surface area but this

necessitates being very thin and potentially fragile. Secondly,

the diameter of the cylinder also determines the size of the

attachment point to the supporting structure. It can be seen

from figure 5b that for short cylinders, the diameter, and there-

fore area required to support the structure becomes very large,
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creating a problem for packing multiple hairs into a small

space. The use of hairs as a structure for maximizing surface

area, therefore, represents a trade-off between optimizing

surface area, mechanical strength and attachment point area.

3.3. Hair length for protection
Hair length can also be adaptive for defence and protection.

For Lymantria dispar caterpillars, hairs provide protection

from parasitoid wasp egg-laying. Wasp oviposition increases

for the hairy caterpillars when their hairs are shorter than

that the wasp’s ovipositor [78]. In plants, plasticity of hair

length also appears to correspond to a defensive function.

For example, thorn length of Acacia trees is increased when

goats are permitted to browse [79], and trichome length of

stinging nettles increases with deer herbivory or experimental

leaf clipping [80]. Protection from abiotic factors can also be

mediated by hair lengths. For Encelia farinosa plants, light

absorbance at 400–700 nm wavelengths negatively correlates

with the lengths of trichomes on the leaf surface [81] and

increases in mammalian fur length lead to substantial increases

in thermal insulation [82].
4. Taper and variable diameter
Apart from differing length, the functions of hairs can be con-

siderably modified by changing the diameter in different

regions of the hair. Tapering is a particularly common theme in

multiple systems, such as Arabidopsis trichomes (figure 1b,c)

[33,83], the wind-sensing cercal hairs of crickets and cockroaches

[66], the wind-sensing hairs of bats [64] and the antennae of cock-

roaches. This can lead to greater sensitivity [64], focusing of force

to the base of the hair [33] or increased ability to map object

locations and detect objects from greater distances [84].

Altered sensitivity can be demonstrated by comparing

the deflection of a cylindrical beam and a conical beam with

equal length L and base diameter d. Applying an equal point

load at a point located a distance l from the base on each

beam, causes the conical beam to deflect 1/(12l/L) times

more than the cylindrical beam. Hence, a force will cause

much larger deflections in a conic taper than a cylindrical

beam if the force is located near the tip but will behave similar

to a cylindrical beam closer to the base. This means that a

tapered beam’s deflection capability has a steep gradient in

sensitivity compared with a non-tapering beam.

Taper in mammalian whiskers allows greater flexibility

[4,6,85]. Hires et al. [4] found that rat whisker flexibility

varied over 5 orders of magnitude from base to tip. Math-

ematical modelling indicated that tapered whiskers exhibit

a degree of flexibility that enables biologically plausible slip-

ping behaviour (figure 1e,f ). In comparison, hypothetical

cylindrical whiskers were unable to detach from objects with-

out active angular rotation outside of the range of a rat’s

abilities. More detailed analysis of whisker diameter and

flexibility has recently indicated that rodent whiskers do

not taper in an exactly linear manner but in fact exhibit

more complex morphologies that vary between individual

whiskers in an array [86,87]. In general, they have a narrower

middle region than a linear taper would predict [86]. This

effectively stiffens the tip of the whisker compared to a

linear taper and might allow more prolonged contact with

objects at a greater range of bending angles, thus providing

increased tactile information. Tapering may also be important
for efficient neural encoding of mechanical signals. In one

model, including taper reduced the number of physical par-

ameters that needed to be monitored for accurate radial

distance detection [88]. Similarly, for a theoretical array of

whiskers, including taper in the model greatly enhanced

the accuracy of three-dimensional contact point localization

[89]. In this study, only tapered whiskers could provide

unique force and bending moment mapping outputs across

the array for all possible contact point locations.

Whisker taper may not be solely important for strength

and flexibility. Williams & Kramer [6] hypothesized that the

taper of mammalian whiskers may allow more robust reson-

ance responses when whiskers break. When whisker tips

break off, the resonant frequency of tapered, conical structures

is less altered than that of cylindrical hair. Owing to the narrow

diameter at the tip of a tapered whisker, a segment of a given

length at the whisker tip contributes less to the harmonic

oscillating frequency than a cylinder.

Tapered whiskers have been included in several artificial

biomimetic whisker arrays [24,90,91], however, the functional

significance of this in physical whisker models has not been

systematically investigated. Such studies may resolve some

of the outstanding questions regarding the precise benefits or

limitations of whisker tapering and may guide the development

of future artificial whisker-based sensing devices.

While flexibility is important for many hairs, inflexible

antennae and whiskers are beneficial in some contexts.

In addition to aiding object detection, tapering may also be a

mechanism to control self-induced oscillations in cockroach

antennae. The decreasing flexural stiffness arising from decreas-

ing diameter along the length of cockroach antennae appears to

have a damping effect as little mechanical vibration is transmitted

from tip to base [84]. This may reduce self-motion-induced

oscillation while running and prevent unwanted movement

after initiating contact with an object.

For similar reasons, harbour seals also favour relatively stiff

whiskers. A unique elliptical whisker shape with periodic

undulations is found in this species (figure 1d), which is

thought to aid prey tracking [3,92]. Stability of the whisker is

important to prevent oscillations derived from the motion of

the seal itself as it swims through water. Whiskers that mitigate

self-induced vibrations can more accurately detect flow fluctu-

ations arising from swimming prey. Computational fluid

dynamics simulations and particle tracking experiments have

been used to compare the harbour seal whisker with sea lion

whiskers, which are roughly cylindrical (figure 1d) [3]. The

undulating, elliptoid, harbour seal whisker structure modifies

the fluid dynamics wake behind the whisker. While sea lion

whiskers promote the formation of periodic vortices, which

are alternatively shed on each side of the whisker and lead to

large oscillating forces, the harbour seal whisker mitigates

vortex formation resulting in more than 10 times lower self-

induced dynamic forces. This allows the harbour seal to be

more sensitive to the external flow fluctuations due to the

wake of prey fish or conspecifics.

Biomimetic models of harbour seal whiskers have been

created and compared to alternative morphologies [93,94].

Beem & Triantafyllou [94] created an artificial plastic harbour

seal whisker and conducted a series of flow visualization

experiments to understand how prey-induced vortices could

be detected in this system. They found that the harbour

seal whisker oscillates at a low frequency when travelling

through water at a constant speed. However, when the whisker
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encounters a vortex arising from the wake of another object, the

whisker synchronizes with the dominant frequency in the

wake and oscillates at a frequency an order of magnitude

larger than its self-induced swimming oscillations. This

increased wake-induced oscillation is much more pronounced

in the artificial harbour seal whisker compared with a cylin-

drical whisker, particularly at large distances from the target

object. Consistent with this finding, comparisons of prey track-

ing behaviour indicate that harbour seals are better able to track

prey trails than sea lions, particularly in tracking more complex

(curved or time-delayed) hydrodynamic trails [95,96].
J.R.Soc.Interface
15:20180206
5. Microstructure
In many cases, large-scale changes in geometry modulate

flexibility but at microscopic resolutions, many biological

hairs have complex geometry arising from intricate nano-

or microstructures, which affect interactions with liquids

or ‘wettability’.

Both taper and microstructures supply water collecting

capacity to cactus spines [97]. The spines (as in Opuntia micro-
dasys) are covered with microscale barbs that capture fog

droplets; the barbs at the tip are oriented downwards, directing

the forming water droplets towards the base of the spine. Inter-

estingly, the spines have two additional features that bring

water towards the recipient tissues (i.e. the fleshy stems): flat-

tened belt-trichomes that absorb the collected water at the

base, and grooves of cell files that gradually widen as the

spine tapers along the tip to base. The tapered shape of

the spine drives water towards the base due to Laplace

pressure, even when the spines are positioned horizontally.

Laplace pressure, also known as curvature or capillary

pressure, is the pressure difference between the inside and out-

side of a curved surface; it depends on the surface tension and

is inversely proportional to the radius of the curvature. Surface

tension acts to minimize the surface area of the liquid–gas inter-

face, and the resulting Laplace pressure of the drop surface

causes the liquid to migrate towards a less curved surface.

Additionally, surface roughness, conferred by grooves in the

spine, decreasestowardsthe base. This helps to generate a gradient

of surface-free energy, further directing droplets to the base.

Similarly, in desert mosses, such as Syntrichia caninervis
(figure 1g,h), an integrated system of hair-like structures are

used to gather water droplets of different sizes [5]. The filamen-

tous awns have gradient surface structures in which nano-scale

grooves at the tip initiate nucleation of water nano-droplets,

whereas the micrometre-sized barbs trap fog particles (water

droplets at micro-scales; figure 1g,h). The droplets coalesce

and grow as they travel towards the fleshy leaves at the base

of the awns, thanks to the conical shape and curvature of the

awns and surface-free energy. Lastly, the awns and leaves

tend to be clustered and are proficient at capturing large water

droplets (i.e. rain) and holding collected water. These mosses

use multi-scale strategies to comprehensively capture water

particles of all sizes available to them in a desert environment.

The hierarchical architecture of hairs has inspired engineer-

ing of geometry-based water capture and gathering structures.

Park et al. [91] mimicked a curved surface with micro- and

nano-scale rough texture to capture water, direct dew move-

ment and collect water at specific locations [98]. The

efficiency of liquid droplet transport on textured surfaces is

highly dependent on the differential surface tension between
separate medium fractions: air versus water or water versus

oil. Recently, cactus-inspired artificial spines were used to

collect micro-droplets of oils from aqueous solution [99].
6. Orientation and curvature
As seen above, curvature can be important at the microscale

level of the surface of a hair, but there are also larger scale

cases where the angle and curvature of a hair can modify

its mechanical properties. For example, in the air bubbles

that form in aquatic insects, angled hairs reduce the size of

the air–water interface relative to the water–insect surface

interface. This may enhance resistance of the air bubble to

high water pressures [53].

6.1. Effect of orientation on shear and contact force
A clear illustration that the orientation of hairs affects

mechanical function is observed in the climbing plant,

Galium aparine. Here, the lower (abaxial) surface of leaves has

curved trichomes with a wider base and a longer region paral-

lel to the leaf, compared with the more vertical, narrower

trichomes of the upper (adaxial) leaf surface [100]. For the

abaxial trichomes, up to seven times less force is required to

detach them from a hooked thread compared to the adaxial tri-

chomes. Similarly, up to four times greater shear force (friction

when sliding the surface of the leaf along a substrate) was

observed for the lower leaf side than the upper. This is thought

to enable firm attachment of the plant to surrounding objects,

allowing climbing, while causing the upper surface to slip

off other surfaces and maintain an orientation facing the

sunlight [100].

Minimization of shear force is also conferred by an array of

flat-lying trichomes on the slippery surfaces of pitcher plants.

The surface of the Heliamphora nutans pitcher is covered in an

array of parallel trichomes that all point downwards towards

the base of the insect-trapping pitcher [101]. When wet, a 28-

fold reduction in friction force was observed when ants were

pulled inwards compared with pulling outwards. This direc-

tionality of trichomes led to ‘aquaplaning’ behaviour causing

ants to fall into the trap [101].

An anisotropic effect on load-bearing is observed in the

hooks or thorns of asparagus and rose and stems due to

the flattened angle of the hooks relative to the stem surface

[102]. The tension force at which the plant hooks fail is sig-

nificantly related to the angle at which the force is applied:

hooks are stronger when the force is parallel to the stem

rather than at a 458 angle. Morphological features of the

hooks are also important—the emergence angle of the hook

itself, the area of the base and the height of the hook are all

significant predictors of hook failure [102].

Similarly, the hairs (setae) of gecko feet that allow releasa-

ble attachment to smooth and rough surfaces (see §§7.1 and

8.2) rely on varying pulling angles and elastic anisotropy to

adhere and detach from a surface by exerting different

muscles [103,104]. A recent study using biomimetic adhesive

microstructures verified that the optimal detachment force is

achieved at pulling angles between 608 and 908 [105].

6.2. Variable hair angle
The ability to change hair angle can allow dynamic responses

to varying signals and environments. The sensitivity of
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mosquito antennae to sound can be modulated by manipu-

lating the angle of the antennal hairs, lifting them to be

perpendicular to the antennal shaft [106]. Sound detection

is enhanced when the hairs are erect, which occurs around

dusk when females are active and producing flight sounds.

Additionally, fur can lie flat or erect to alter thermoregu-

lation. In two squirrel species, fur erection was found to

decrease coat reflectivity and increase thermal resistance

[107]. Although perpendicular hair is more heat conductive

than hair parallel to the skin, the change in angle increases

the effective depth of the fur layer so can increase overall ther-

mal insulation [108]. For primates, it has been proposed that

the enhanced ability to dynamically thermoregulate via fur

erection may have been a prerequisite for the evolution of a

diurnal lifestyle combined with large thermo-sensitive brains

[109]. Inspiration has been drawn from fur erection (in this

case of the polar bear) for the thermoregulatory design of

movable aluminium panels on the surface of the Singapore

Arts Centre [110].

6.3. The effect of curvature on attachment
Curvature along the length of the hair allows hooking and

attachment (figure 3). For example, in the array of hairs

(barbs) that form a feather, curved hair-like barbules are

found at the ends of each barb. These hooked barbules are

arranged at an angle such that they interlock with a groove

in the barbule of an adjacent barb. This mechanism, similar

to coat hangers on a rail, zips barbs together to form a relatively

impervious surface. This locking together appears to enhance

the robustness and strength of the feather barbs as, when

zipped together, greater barb displacements can occur before

yielding compared with that of an isolated barb [111].

Velcro is one of the most famous bioinspired engineering

applications of the use of curved hairs for attachment

common in many plant species. Gorb & Gorb [112] measured

the contact separation force of fruit hooks of four different

species, which attach to animal coats to disperse. Several

structural features influenced the attachment force including

the size of the bur, the span or width of the hook part and

the width of hook relative to width of bur shaft. Accompany-

ing theoretical work found that, the diameter of the bur and

the height of the curved region had a considerable impact on

the amount of tensile force required for a given displacement

(figure 3) [51].

In other examples, curved root hairs and trichomes also

allow attachment of ivy to rough surfaces [113], linking of

cotton petals to one another to physically regulate growth

[114] and entrapment of bed bugs on bean leaves, which

has inspired the fabrication of biomimetic insect-trapping

surfaces [115].
7. Spacing of hairs in arrays
7.1. Hair density in attachment
For an array of hairs, enhanced or even emergent interactions

with the environment can take place as multiple hairs are

placed close together. In fact, biological hairs are rarely found

alone; they tend to cluster, often juxtaposed with other types

of hairs of different sizes and morphology. Dense spacing of

hair arrays in insects, spiders and geckos can enable adhesion

to smooth or rough surfaces (figure 4d,e). This adhesion via
hairs (setae) is known as ‘contact splitting’, in which adhesion

is enhanced when a single contact is split in many contact

points [116]. As animal body mass increases, seta distribution

becomes denser and the patterned protuberances get finer

(figure 4d) [117]. Van der Waals forces of a single contact

point would not be large enough to support adhesion. Insects

and geckos increase adhesion force by splitting the contact

into n sub-contact points. The total adhesion force of hairs

can be calculated using Hertz’s contact theory for elastic

bodies [118] and improved to account for surface attraction

(Johnson–Kendall–Robert theory) [119]. Using the JKR

theory and approximating hair terminal elements as a hemi-

spherical shape, the total adhesion force is proportional to
ffiffiffi
n
p

[117]. Therefore, filamentous adhesion exploits molecular inter-

actions provided by a large number of sub-contacts (in the

range of 103–104 for fly footpads, see figure 4d,e) to achieve

strong adhesion. The independent contribution of each hair to

adhesion also means that contact failure is limited to a single

adhesion element [120]. Theoretical and biomimetic studies

have demonstrated that the effects of contact splitting are

related to the diameter of each seta as adhesive force increases

as the diameter of each seta decreases [121,122].

Some arthropods use hair arrays for attachment in which

two sets of hairy pads stick to each other. This occurs in a

range of beetles and flies whose pads of dense outgrowths

attach their wings to their bodies when not in flight, and to

immobilize the head of the dragonfly during flight and feed-

ing. Adhesion arises from friction occurring when two arrays

of hairs interlock maximizing lateral shear adhesion [123].

Such attachment devices have been named probabilistic fas-

teners owing to the effective attachment despite imprecise

aligning of hair arrays. This attachment can only occur if

the average distance between individual hairs is less than

the diameter of the hair tip [123]. This structure has been

mimicked by Pang et al. [124], who developed polymer-

based fibre arrays that interlocked achieving adhesive forces

more than twofold greater than the contact-splitting type of

attachment structures found in geckos.
7.2. Hair spacing in locomotion
Inter-hair spacing within an array can greatly affect interactions

with other structures and surrounding media [125]. The hair’s

Reynolds number (Re) is one of the key parameters in deter-

mining the function of an array. The Reynolds number of

microscopic organisms is typically much less than one, but

varies over many orders of magnitude (1025 to 1) [125].

At this low Re, locomotive strategies available to organisms

at higher Reynolds numbers are ineffective.

At low Re, each hair is surrounded by a thick boundary

layer extending many body diameters into the fluid. When

hairs are close to one another, the interacting boundary

layers significantly reduce the fluid flow between the hairs,

making the array behave like a paddle. At higher Re, this

boundary layer does not extend into the fluid as far, so that

neighbouring hairs do not interact as strongly, behaving

more like a rake (figure 4a). The degree to which an array is

rake-like is termed the leakiness of the array [125]. At Re ,

1022, an array of hairs will behave like a paddle, while for Re
close to 1, they behave like leaky sieves. At very low Reynolds

numbers (Re , 1023), the leakiness of the array is insensitive to

changes in the array spacing or Re. Consequently, one expects

large morphological/behavioural diversity with little effect on
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function (figure 4a). On the other hand, for 1022 � Re , 1,

changes in Re or array spacing leads to appreciable changes

in leakiness. In this sensitive region of the parameter space,

arrays can change their function with small changes in array

spacing [52].

One example of paddle-like behaviour is found in thrips

(Thysanoptera); these millimetre-sized insects use a comb-

like wing, comprising many slender hairs arranged in an

array rather than an impervious membranous wing [126].

Owing to their porosity, such wings are a lightweight sol-

ution to the wing problem, yet the losses in aerodynamic

efficiency are minimal: producing 80–90% the force that an

impervious wing would produce. The wings achieve such

high aerodynamic efficiency by making use of low-Re fluid

flow features, which is explained in detail in the mathematical

model of Barta & Weihs [126].

Dense spacing of hairs may also be important at higher

Re, such as in bird flight. The structure of bird feathers con-

sists of a central shaft to which many hairs, called barbs,

are attached. These are arranged in parallel to one another

and are closely spaced. Transmission of air through these

arrays of barbs varies for different feathers on a wing and

for different regions of a feather [127]. Differences in fluid

permeability has been linked to barb spacing in kestrel feath-

ers and may be implicated in lift : drag ratios in chukar

partridges [127,128].

7.3. Hair spacing in mechanical sensing
An effective increase in surface area by forming arrays of rela-

tively impermeable hairs can enhance or modify the sensitivity

of hair-based sensors. For example, the antennae of male

mosquitoes are not just simple rods, they also bear additional

hairs arranged in whorls around the main antennal flagellum.

These are rigidly coupled to the antenna and resonate together

with the main flagellum. It is thought that they act to increase

the surface area of the antennae, thereby enhancing sensitivity

to sound [60]. Mathematical modelling of the flow-sensing

hairs of crustaceans and arthropods indicates that hair spacing

can modify mechanical deflection. The feathered and fila-

mentous arrays of mechanosensory sensilla on crustaceans

have up to 20 times greater bending moments in response to

flow perturbations than crustacean sensilla consisting of

single hairs [129,130]. Additionally, modelling of fluid inter-

actions between multiple cricket cercal hairs suggests that

many are strongly affected by the presence of their neighbours

[131] but for the spider Cupiennius salei the relatively sparse

arrangement with hairs 20–50 diameters apart, prevents any

significant viscosity-mediated coupling [132].

7.4. Hair spacing for air trapping
Dense arrays of hairs are also often involved in air–water inter-

actions. Trapping of air between hairs occurs on the surfaces of

leaves, insects and in marine mammals. For plants, water dro-

plets may block stomata and prevent gas exchange. Dense

trichomes appear to enhance hydrophobicity of surfaces and

maintain a layer of air under between trichomes and the leaf

surface. A measure of hydrophobicity is the equilibrium con-

tact angle qC, which is the angle that the droplet’s free

surface meets the solid. This angle represents the relative con-

tributions of the molecular interactions of the liquid, solid

and gas phases; by definition, a surface is hydrophobic if

qC . 908 and hydrophilic if qC , 908. In a survey of 38
randomly selected plant species, leaves with trichomes were

hydrophobic (qC ¼ 1048), whereas those without trichomes

were hydrophilic (qC ¼ 828) [133]. Large droplet contact

angles also correlate with trichome density indicating that

reduced hair spacing can increase hydrophobicity [133–135].

On bumpy surfaces, wetting states are significantly affected

by the degree of roughness. There are two common states that a

droplet may adopt on a rough surface: one in which the droplet

is supported by a layer of air (often described by the Cassie–

Baxter model) and another in which the droplet seeps into

the crevices in the surface (described by the Wenzel model).

Contact angles for these states can be predicted by the

Cassie–Baxter model or the Wenzel model based on the

relevant smooth surface contact angle u0, and either the rough-

ness ratio, r (actual surface area/projected surface area), or the

fraction of the surface in contact with the droplet, f.
Wenzel:

cosuc ¼ rcosu0:

Cassie–Baxter:

cosuc ¼ f � 1þ fcosu0:

Brewer et al. [133] noted that for some plant leaves an air

layer was maintained between the leaf surface and the tips of

the trichomes. The original data can be compared with

approximate predictions from the Cassie and Wenzel formu-

lations for the relationship between surface roughness and

droplet contact angle in figure 6.

Here, roughness was calculated by assuming that tri-

chomes are cylinders of 0.1 mm diameter and 0.42 mm in

length (the average for all leaves in Brewer’s data) and the

reference contact angle, u0 was 828 as reported in Brewer’s

data for leaves with no trichomes. The Cassie–Baxter

model gives a good approximation of the hydrophobic con-

tact angles observed for leaves with trapped air layers.

Similarly, the Wenzel model predicts lower contact angles

as observed for leaves without trapped air layers. However,

neither model convincingly captures the relationship between

trichome density and contact angle. This is likely due to over-

simplification as trichomes are rarely cylindrical and leaf

chemistry may also vary between samples, so further work

to understand these relationships would be fruitful. Attempts

to predict the likelihood of Cassie–Baxter versus Wenzel states
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for arrays of synthetic micropillars have indicated that wetting

states are determined by a combination of pillar spacing, pillar

height, droplet size and complex curvature of the projected

material [136–140].

Trapping air with hairs is crucial for aquatic insects that

form plastrons (figure 4b), trapped bubbles of air that store

oxygen for respiration. This attachment of the air bubble is at

least partly a function of the surface topography arising from

an array of hairs. Using a moulding technique, Perez-Good-

wyn et al. [141] demonstrated that, compared to a smooth

surface formed of the same epoxy resin, the water droplets

on a moulded epoxy insect-like surface changed the droplet

from borderline hydrophobic (qC ¼ 928) to superhydrophobic

(qC ¼ 179.68). Flynn & Bush [142] quantitatively examined the

impact of surface geometry, size and water characteristics on

bubble retention and respiratory capacity, identifying a range

of physical constraints on this mode of breathing. For example,

while decreasing spacing between hairs can maintain an air

bubble at greater maximum diving depths, it simultaneously

reduces the surface area of the bubble interface in shallower

regions lowering the respiratory capacity. This demonstrates

an important morphological trade-off. Balmert et al. [53] also

found that a high density of hairs extended the duration

that a bubble could persist. Insects with low-density hairs

(10–30 mm apart) could maintain an air film for around 2

days, whereas species with hairs spaced less than 1 mm apart

sustained an air film for at least 2 weeks, and in some cases

more than 4 months.

A much larger scale occurrence of a similar phenomenon

occurs in aquatic mammals. Comparisons of fur spacing of

aquatic versus terrestrial species indicate that, where blubber

is not present, aquatic species generally bear thicker pelts

with densely packed fur compared to their terrestrial relatives

[136,137]. For nine semi-aquatic mammals, Fish et al. [143]

found that the buoyant force was linearly related to the packing

density of hairs according to the following relationship:

buoyant force (NÞ ¼ 0:155þ 0:0007 hair density (mm�2Þ:

Densely packed fur enhances trapping of air within the

fur layer facilitating both reduced heat loss and increased

buoyancy [143–146]. It is also interesting to note that most

aquatic mammals possess high aspect ratio fur (figure 2).

We expect that precise values of CY become invalid as deflec-

tions become large due to the assumption of small deflections

in linear beam theory but as CY . 103 for these animals, it is

likely that they would exhibit large bending deflections at the

typical animals’ swimming speeds. Though our calculations

of CY assume that there are no interactions between neigh-

bouring hairs and does not consider the possibility of

trapped air between hairs, future work on the effect of fur

flexibility on buoyancy may be informative. Alternatively,

fur flexibility may simply be a constraint imposed by the

narrow diameter required for dense packing.
7.5. Spacing of hairs for protection and
thermoregulation

Dense spacing of hairs is also important for a number of protec-

tive, reflective and insulating functions. For example, bed bugs

spend longer searching for an appropriate bite location on hair-

ier human arms [147] and dense plant trichomes occur on

leaves for defence against herbivores (reviewed in [148]).
Dense trichomes have additional roles in light reflection and

reduction of water loss (reviewed in [149]) and may act as a

sunscreen absorbing UV-B radiation [150–155]. Ehleringer

et al. [156] found that trichomes on Encelia farinosa, a desert

shrub, reduced light absorption in the photosynthetically

active range by 56% compared to a hairless, closely related

species. Though magnitudes vary considerably, in general,

removal of leaf trichomes reduces light reflectance by around

10% [149]. This appears to be important for thermoregulation,

particularly in arid environments where evaporative cooling

by water may be difficult [157].

Within mammals, fur plays a similar thermoregulatory

role. Dense fur, such as that of a rabbit, has lower thermal con-

ductance than the sparser fur of horses and pigs [158].

Interestingly, Hutchinson & Brown [159] found that, for cattle

fur, increased light radiation penetrated through the coat to

the skin in sparse fur compared to dense fur. This means that

the optimum density of fur for thermoregulation is a careful

balance between regulating how much heat reaches the skin

relative to how much may be allowed out [160–164]. Similarly,

in the diurnal numbat, sparse fur allows heating through solar

absorption, whereas closely related nocturnal marsupials

prioritize the reduced thermal resistance and heat retention

of dense fur [161]. Models have been constructed that describe

the relationship between heat load at the skin surface and

experimentally measured thermal insulation of animal coats

[107,158,160,165] but modelling the effects of fur structural

properties on thermoregulation may give a more detailed,

systematic understanding.

In terms of engineering, the creation of clothing (i.e.

mimicking the presence of fur) is presumably one of the

oldest examples of biomimetics. More recently, materials

based on fur have been proposed and developed for building

insulation and solar radiation harvest [166–168]. In one

example, a polymer fibre-based translucent material has been

created to enhance capture and retention of solar radiation.

This mimics the polar bear’s use of reflective white fur to

direct solar radiation to the dark-coloured skin beneath [166].
8. Complex array structure
8.1. Composite hair arrays
A number of biological systems make use of arrays of hairs

with variable lengths. For the air bubble of aquatic insects, it

has been proposed that an array comprising hairs of multiple

lengths (figure 4b) at different densities could provide a mech-

anism to optimize both large volumes and air bubble

persistence [53]. Longer, less dense hairs in some aquatic

insects can trap a large bubble of air for short periods while

the shorter, denser hairs can sustain a very persistent air film.

This may provide a robust backup system such that in cases

where plastron volume decreases to a critical level, the shorter

hairs of the inner layer (figure 4b) may maintain a bubble with

greater longevity and resistance to pressure [53].

Multiple layers of hairs are also often present in fur (e.g.

[163,165]). For the rock squirrel, an inner layer consists of

dense, dark shorter hairs and an outer longer layer comprises

lighter, less dense fur. The outer layer is much more transmis-

sive to solar radiation than the inner layer, and the inner layer

provides greater insulation. The combination of these layers

results in a peak of radiation absorption at the boundary

between the two layers. Remarkably, the lengths of the two
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layers (the inner contributing around 67% of the total coat

length) are extremely close to a theoretical optimum that mini-

mizes solar heating of the skin [165]. By altering the relative

densities of the inner and outer layers, rock squirrels can com-

pensate for changing solar radiation levels in winter versus

summer [160]. A similar use of complex sub-structures to

modulate light reflectance is employed by trichomes. For

example, [134] found that flattened projections on the ends of

Tillandsia trichomes increased leaf light reflectance. Similarly,

Mershon et al. [169] found that for two Pachycladon species

with similar trichome density, the species with more branched

trichomes exhibited increased reflectance.

8.2. Hierarchical structure for adhesion
Complex, hierarchical structure may be important for adhesion

of a range of animal foot pads. Hundreds of thousands of setae

(around 100 mm long) on gecko feet are further patterned

with thinner hairs (spatulae) arranged in hierarchical pattern.

Yao et al. [104] demonstrated analytically that slender setae

with a high aspect ratio enhance adhesion. However, increases

in aspect ratio (by increasing setae length) are limited by an

instability causing bunching due to van der Waals forces

between adjacent setae. Therefore, multiple levels of hierarchy

are thought to be required to achieve strong adhesion at a

macroscopic scale. However, fracturing limits the optimal

number of levels to 2 or 3 [104].

Though a number of theoretical studies have predicted that

hierarchical structure improves adhesion [104,170–172], biomi-

metic adhesive devices (figure 4c) have shown mixed results.

Bauer et al. [173] found a reduction in adhesion strength on

smooth surfaces for microfabricated hierarchical seta arrays.

Additionally, Greiner et al. [174] and Jeong et al. [175] con-

structed two-level pillar arrays that exhibited reduced

adhesion compared to single-level structures. In both cases

though, the single- and double-layer structures may not have

been directly comparable as micropillar packing density was

not the same. By contrast, and in agreement with theoretical

predictions, clear increases in adhesive strength were found

in one case for two-level polymer-based micropillars arrays

compared with either level alone [54] (figure 4c).

9. Conclusion
The mechanics of beams have been studied for centuries but,

with the added complexity of structure and form found

within biology, simple beams become sensors, water collectors,

hooks, wings, insulators, attachment mechanisms and trap-

ping devices. This versatility of a simple structural unit

allows diverse functions arising from small differences in
morphology and material properties. For many features, such

as diameter and hair spacing, a small change in geometry

can have dramatic effects on function due to high-order scaling

or step changes in physical relationships. There are many out-

standing questions, however. Systematic analyses of many of

the structural properties described here are lacking, for

example, the role of different types of taper in hair deflection

at different aspect ratios and flow regimes, the relationship

between hair spacing and wetting regimes and the effect of

hair flexibility on fur buoyancy at varying Reynolds numbers.

Theoretical and experimental studies on biological hairs

generate a fascinating understanding of mechanisms that gen-

erate functions. This can create new ideas for biomimetic

engineering to construct diverse and useful tools. So far, excel-

lent biomimetic work has been carried out using hairs as

sensors and adhesives. Other areas though are less well devel-

oped, such as using hairs for insulation, fluid trapping and

protective functions. Using many established fabrication tech-

niques, it may be possible to diversify engineering functions

and open new avenues for research. For example, researchers

working on the Cilllia project have used a single microfabrica-

tion method (using three-dimensional printing) to generate

hair arrays with both actuation and sensing capabilities as

well as surface texture modification [176]. Additionally, hairs

rarely act alone. The interactions between hairs and subfunctio-

nalization within complex arrays open up a world of new

possibilities for research and engineering. By combining hairs

with different properties and geometries, it may be possible

to create devices capable of multiple functions depending on

characteristics of the environment.

Biomimetic engineering is not only important for technol-

ogy development. In many cases, artificially constructed

devices can act as physical models for biological systems. By

separately controlling the existence or scaling of geometrical

features, the mechanisms behind different structural functions

can be specifically and systematically investigated. This can

help understand the constraints that organisms must deal

with and, where function is not optimal, such studies may

highlight the presence of previously unknown trade-offs.
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44. Maoiléidigh DÓ, Nicola EM, Hudspeth AJ. 2012 The
diverse effects of mechanical loading on active hair
bundles. Proc. Natl Acad. Sci. USA 109, 1943 – 1948.
(doi:10.1073/pnas.1120298109)

45. White RD, Grosh K. 2002 Design and
characterization of a MEMS piezoresistive cochlear-
like acoustic sensor. In ASME IMECE, New Orleans,
17 – 22 November, pp. 201 – 210. New York, NY:
American Society of Mechanical Engineers. (doi:10.
1115/imece2002-33309)

46. White RD, Grosh K. 2005 Microengineered
hydromechanical cochlear model. Proc. Natl Acad.
Sci. USA 102, 1296 – 1301. (doi:10.1073/pnas.
0407446102)

47. Haronian D, MacDonald NC. 1995 A
microelectromechanics based artificial cochlea
(MEMBAC). In The 8th International Conference on
Solid-State Sensors and Actuators, and Eurosensors
IX. Transducers, Stockholm, Sweden, 25 – 29 June,
pp. 708 – 711. New York, NY: IEEE. (doi:10.1109/
sensor.1995.721930)

48. Bachman M, Zeng F-G, Xu T, Li G-P. 2006
Micromechanical resonator array for an implantable
bionic ear. Audiol. Neurotol. 11, 95 – 103. (doi:10.
1159/000090682)

49. Mastropaolo E, Latif R, Koickal T, Hamilton A,
Cheung R, Newton M, Smith L. 2012 Bimaterial
electromechanical systems for a biomimetical
acoustic sensor. J. Vac. Sci. Technol. B 30, 06FD01.
(doi:10.1116/1.4764094)

50. Jang J et al. 2015 A microelectromechanical system
artificial basilar membrane based on a piezoelectric
cantilever array and its characterization using an animal
model. Sci. Rep. 5, 12447. (doi:10.1038/srep12447)

51. Chen Q, Gorb SN, Gorb E, Pugno N. 2013 Mechanics
of plant fruit hooks. J. R. Soc. Interface 10,
20120913. (doi:10.1098/rsif.2012.0913)

52. Koehl MAR. 2001 Transitions in function at low
Reynolds number: hair-bearing animal appendages.
Math. Methods Appl. Sci. 24, 1523 – 1532. (doi:10.
1002/mma.213)

53. Balmert A, Bohn HF, Ditsche-Kuru P, Barthlott W.
2011 Dry under water: comparative morphology
and functional aspects of air-retaining insect surfaces.
J. Morphol. 272, 442 – 451. (doi:10.1002/jmor.10921)

54. Murphy MP, Kim S, Sitti M. 2009 Enhanced
adhesion by gecko-inspired hierarchical fibrillar
adhesives. ACS Appl. Mater. Interfaces 1, 849 – 855.
(doi:10.1021/am8002439)

55. Federle W. 2006 Why are so many adhesive pads
hairy? J. Exp. Biol. 209, 2611 – 2621. (doi:10.1242/
jeb.02323)

http://dx.doi.org/10.1523/JNEUROSCI.23-16-06510.2003
http://dx.doi.org/10.1016/j.neuron.2007.12.024
http://dx.doi.org/10.1016/j.neuron.2007.12.024
http://dx.doi.org/10.1523/JNEUROSCI.21-15-05752.2001
http://dx.doi.org/10.1523/JNEUROSCI.21-15-05752.2001
http://dx.doi.org/10.1016/j.neuron.2008.05.013
http://dx.doi.org/10.1126/sciadv.1600716
http://dx.doi.org/10.1242/jeb.126896
http://dx.doi.org/10.1016/j.tins.2016.04.008
http://dx.doi.org/10.1152/jn.01104.2005
http://dx.doi.org/10.1109/mra.2009.933624
http://dx.doi.org/10.1109/mra.2009.933624
http://dx.doi.org/10.1038/443525a
http://dx.doi.org/10.1038/443525a
http://dx.doi.org/10.1080/01691864.2015.1069210
http://dx.doi.org/10.1080/01691864.2015.1069210
http://dx.doi.org/10.1109/tmech.2008.2001184
http://dx.doi.org/10.1109/tmech.2008.2001184
http://dx.doi.org/10.1109/70.88059
http://dx.doi.org/10.1109/70.681246
http://dx.doi.org/10.1115/IMECE2002-33988
http://dx.doi.org/10.1109/tro.2006.878950
http://dx.doi.org/10.1109/tro.2006.878950
http://dx.doi.org/10.1016/j.robot.2006.08.001
http://dx.doi.org/10.1098/rstb.2011.0164
http://dx.doi.org/10.1038/nnano.2015.88
http://dx.doi.org/10.1038/nnano.2015.88
http://dx.doi.org/10.1086/330177
http://dx.doi.org/10.1126/science.111.2888.491
http://dx.doi.org/10.1038/nature03185
http://dx.doi.org/10.1109/NMDC.2009.5167573
http://dx.doi.org/10.4161/psb.5.8.12136
http://dx.doi.org/10.1085/jgp.56.1.64
http://dx.doi.org/10.1085/jgp.56.1.64
http://dx.doi.org/10.1111/pce.12728
http://dx.doi.org/10.1039/C6MH00167J
http://dx.doi.org/10.1038/ncomms15546
http://dx.doi.org/10.1038/ncomms15546
http://dx.doi.org/10.1103/PhysRevB.87.024304
http://dx.doi.org/10.1088/0022-3727/42/15/155411
http://dx.doi.org/10.1088/0022-3727/42/15/155411
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102135
http://dx.doi.org/10.1146/annurev.fluid.40.111406.102135
http://dx.doi.org/10.1073/pnas.96.25.14306
http://dx.doi.org/10.1073/pnas.1501453112
http://dx.doi.org/10.1073/pnas.1302911110
http://dx.doi.org/10.1073/pnas.1120298109
http://dx.doi.org/10.1115/imece2002-33309
http://dx.doi.org/10.1115/imece2002-33309
http://dx.doi.org/10.1073/pnas.0407446102
http://dx.doi.org/10.1073/pnas.0407446102
http://dx.doi.org/10.1109/sensor.1995.721930
http://dx.doi.org/10.1109/sensor.1995.721930
http://dx.doi.org/10.1159/000090682
http://dx.doi.org/10.1159/000090682
http://dx.doi.org/10.1116/1.4764094
http://dx.doi.org/10.1038/srep12447
http://dx.doi.org/10.1098/rsif.2012.0913
http://dx.doi.org/10.1002/mma.213
http://dx.doi.org/10.1002/mma.213
http://dx.doi.org/10.1002/jmor.10921
http://dx.doi.org/10.1021/am8002439
http://dx.doi.org/10.1242/jeb.02323
http://dx.doi.org/10.1242/jeb.02323
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180206

14

 on June 7, 2018http://rsif.royalsocietypublishing.org/Downloaded from 
56. Sukontason KL, Bunchu N, Methanitikorn R,
Chaiwong T, Kuntalue B, Sukontason K. 2006
Ultrastructure of adhesive device in fly in families
Calliphoridae, Muscidae and Sarcophagidae, and
their implication as mechanical carriers of
pathogens. Parasitol. Res. 98, 477 – 481. (doi:10.
1007/s00436-005-0100-0)

57. Voigt D, Gorb S. 2010 Locomotion in a sticky
terrain. Arthropod. Plant. Interact. 4, 69 – 79.
(doi:10.1007/s11829-010-9088-1)

58. Russell IJ, Kössl M, Richardson GP. 1992 Nonlinear
mechanical responses of mouse cochlear hair
bundles. Proc. R. Soc. Lond. B 250, 217 – 227.
(doi:10.1098/rspb.1992.0152)
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73. Helander HF, Fändriks L. 2014 Surface area of the
digestive tract — revisited. Scand. J. Gastroenterol.
49, 681 – 689. (doi:10.3109/00365521.2014.898326)

74. Mead KS, Koehl MA. 2000 Stomatopod antennule
design: the asymmetry, sampling efficiency and
ontogeny of olfactory flicking. J. Exp. Biol. 203,
3795 – 3808.

75. Reidenbach MA, George N, Koehl MAR. 2008
Antennule morphology and flicking kinematics
facilitate odor sampling by the spiny lobster,
Panulirus argus. J. Exp. Biol. 211, 2849 – 2858.
(doi:10.1242/jeb.016394)

76. Reidenbach MA, Koehl MAR. 2011 The spatial and
temporal patterns of odors sampled by lobsters and
crabs in a turbulent plume. J. Exp. Biol. 214,
3138 – 3153. (doi:10.1242/jeb.057547)

77. Singh Gahoonia T, Care D, Nielsen NE. 1997 Root
hairs and phosphorus acquisition of wheat and
barley cultivars. Plant Soil 191, 181 – 188. (doi:10.
1023/A:1004270201418)

78. Kageyama A, Sugiura S. 2016 Caterpillar hairs as an
anti-parasitoid defence. Sci. Nat. 103, 86. (doi:10.
1007/s00114-016-1411-y)

79. Young TP. 1987 Increased thorn length in Acacia
depranolobium — an induced response to
browsing. Oecologia 71, 436 – 438. (doi:10.1007/
BF00378718)

80. Kato T, Ishida K, Kikuchi J, Torii H. 2017 Induced
response to herbivory in stinging hair traits of
Japanese nettle (Urtica thunbergiana) seedlings in
two subpopulations with different browsing
pressures by sika deer. Plant Species Biol. 32,
340 – 347. (doi:10.1111/1442-1984.12163)

81. Ehleringer J. 1984 Ecology and ecophysiology of leaf
pubescence in North American desert plants. In
Biology and chemistry of plant trichomes (eds E
Rodrigues, PL Healy, I Mehta), pp. 113 – 132.
New York, NY: Plenum Press.

82. Scholander PF, Walters V, Hock R, Irving L. 1950
Body insulation of some arctic and tropical
mammals and birds. Biol. Bull. 99, 225 – 236.
(doi:10.2307/1538740)
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