232 research outputs found

    Champeta Music: Between Regional Popularity and National Rejection, Colombia 1970-2000

    Get PDF
    Cities, Migration and Global Interdependenc

    Atypical neurocognitive functioning in children and adolescents with obsessive-compulsive disorder (OCD).

    Get PDF
    Atypical neurocognitive functioning has been found in adult patients with obsessive-compulsive disorder (OCD). However, little work has been done in children and adolescents with OCD. In this study, we investigated neurocognitive functioning in a large and representative sample of newly diagnosed children and adolescents with OCD compared to non-psychiatric controls. Children and adolescents with OCD (n = 119) and non-psychiatric controls (n = 90) underwent psychopathological assessment, intelligence testing, and a neurocognitive test battery spanning cognitive flexibility, planning and decision-making, working memory, fluency, and processing speed. The MANOVA main effect revealed that children and adolescents with OCD performed significantly worse than the control group (p < .001, [Formula: see text] = 0.256). Atypical patient performance was particularly found for indices of cognitive flexibility, decision-making, working memory, and processing speed. We found no evidence of differences in planning or fluency. Moreover, we found no significant associations between neurocognitive performance and OCD symptom severity or comorbidity status. Our results indicate that children and adolescents with OCD show selective atypical neurocognitive functioning. These difficulties do not appear to drive their OCD symptoms. However, they may contribute to lifespan difficulties and interfere with treatment efficacy, an objective of our research currently

    Braid group statistics implies scattering in three-dimensional local quantum physics

    Full text link
    It is shown that particles with braid group statistics (Plektons) in three-dimensional space-time cannot be free, in a quite elementary sense: They must exhibit elastic two-particle scattering into every solid angle, and at every energy. This also implies that for such particles there cannot be any operators localized in wedge regions which create only single particle states from the vacuum and which are well-behaved under the space-time translations (so-called temperate polarization-free generators). These results considerably strengthen an earlier "NoGo-theorem for 'free' relativistic Anyons". As a by-product we extend a fact which is well-known in quantum field theory to the case of topological charges (i.e., charges localized in space-like cones) in d>3, namely: If there is no elastic two-particle scattering into some arbitrarily small open solid angle element, then the 2-particle S-matrix is trivial.Comment: 25 pages, 4 figures. Comment on model-building added in the introductio

    Induced Parity Nonconserving Interaction and Enhancement of Two-Nucleon Parity Nonconserving Forces

    Get PDF
    Two-nucleon parity nonconserving (PNC) interaction induced by the single-particle PNC weak potential and the two-nucleon residual strong interaction is considered. An approximate analytical formula for this Induced PNC Interaction (IPNCI) between proton and neutron is derived (Q(rσp×σn)δ(rprn)Q({\bf r} {\bf \sigma}_{p} \times {\bf \sigma}_{n}) \delta({\bf r}_{p}-{\bf r}_{n})), and the interaction constant is estimated. As a result of coherent contributions from the nucleons to the PNC potential, IPNCI is an order of magnitude stronger (A1/3\sim A^{1/3}) than the residual weak two-nucleon interaction and has a different coordinate and isotopic structure (e.g., the strongest part of IPNCI does not contribute to the PNC mean field). IPNCI plays an important role in the formation of PNC effects, e.g., in neutron-nucleus reactions. In that case, it is a technical way to take into account the contribution of the distant (small) components of a compound state which dominates the result. The absence of such enhancement (A1/3\sim A^{1/3}) in the case of T- and P-odd interaction completes the picture.Comment: Phys. Rev. C, to appear; 17 pages, revtex 3, no figure

    Curing singularities in cosmological evolution of F(R) gravity

    Full text link
    We study F(R)F(R) modified gravity models which are capable of driving the accelerating epoch of the Universe at the present time whilst not destroying the standard Big Bang and inflationary cosmology. Recent studies have shown that a weak curvature singularity with R|R|\to\infty can arise generically in viable F(R)F(R) models of present dark energy (DE) signaling an internal incompleteness of these models. In this work we study how this problem is cured by adding a quadratic correction with a sufficiently small coefficient to the F(R)F(R) function at large curvatures. At the same time, this correction eliminates two more serious problems of previously constructed viable F(R)F(R) DE models: unboundedness of the mass of a scalar particle (scalaron) arising in F(R)F(R) gravity and the scalaron overabundance problem. Such carefully constructed models can also yield both an early time inflationary epoch and a late time de Sitter phase with vastly different values of RR. The reheating epoch in these combined models of primordial and present dark energy is completely different from that of the old R+R2/6M2R + R^{2}/6M^{2} inflationary model, mainly due to the fact that values of the effective gravitational constant at low and intermediate curvatures are different for positive and negative RR. This changes the number of e-folds during the observable part of inflation that results in a different value of the primordial power spectrum index.Comment: Discussion expanded, references added, results unchanged, accepted for publication in JCAP. A minor typo in Eq. (2.14) has been correcte

    Evolution of the Neckeraceae (Bryophyta): resolving the backbone phylogeny

    Get PDF
    Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.Earlier phylogenetic studies, including species belonging to the Neckeraceae, have indicated that this pleurocarpous moss family shares a strongly supported sister group relationship with the Lembophyllaceae, but the family delimitation of the former needs adjustment. To test the monophyly of the Neckeraceae, as well as to redefine the family circumscription and to pinpoint its phylogenetic position in a larger context, a phylogenetic study based on molecular data was carried out. Sequence data were compiled, combining data from all three genomes: nuclear ITS1 and 2, plastid trnS-rps4-trnT-trnL-trnF and rpl16, and mitochondrial nad5 intron. The Neckeraceae have sometimes been divided into the two families, Neckeraceae and Thamnobryaceae, a division rejected here. Both parsimony and Bayesian analyses of molecular data revealed that the family concept of the Neckeraceae needs several further adjustments, such as the exclusion of some individual species and smaller genera as well as the inclusion of the Leptodontaceae. Within the family three well-supported clades (A, B and C) can be distinguished. Members of clade A are mainly non-Asiatic and nontropical. Most species have a weak costa and immersed capsules with reduced peristomes (mainly Neckera spp.) and the teeth at the leaf margins are usually unicellular. Clade B members are also mainly non-Asiatic. They are typically fairly robust, distinctly stipilate, having a single, at least relatively strong costa, long setae (capsules exserted), and the peristomes are well developed or only somewhat reduced. Members of clade C are essentially Asiatic and tropical. The species of this clade usually have a strong costa and a long seta, the seta often being mammillose in its upper part. The peristome types in this clade are mixed, since both reduced and unreduced types are found. Several neckeraceous genera that were recognised on a morphological basis are polyphyletic (e.g. Neckera, Homalia, Thamnobryum, Porotrichum). Ancestral state reconstructions revealed that currently used diagnostic traits, such as the leaf asymmetry and costa strength are highly homoplastic. Similarly, the reconstructions revealed that the 'reduced' sporophyte features have evolved independently in each of the three clades.Peer reviewe

    Quantum computing implementations with neutral particles

    Full text link
    We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on Neutral Particles

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    Exclusive rho^0 muoproduction on transversely polarised protons and deuterons

    Get PDF
    The transverse target spin azimuthal asymmetry A_UT in hard exclusive production of rho^0 mesons was measured at COMPASS by scattering 160 GeV/c muons off transversely polarised protons and deuterons. The measured asymmetry is sensitive to the nucleon helicity-flip generalised parton distributions E^q, which are related to the orbital angular momentum of quarks in the nucleon. The Q^2, x_B and p_t^2 dependence of A_UT is presented in a wide kinematic range. Results for deuterons are obtained for the first time. The measured asymmetry is small in the whole kinematic range for both protons and deuterons, which is consistent with the theoretical interpretation that contributions from GPDs E^u and E^d approximately cancel.Comment: 20 pages, 9 figures and 4 tables, updated author lis

    Constraining the electric charges of some astronomical bodies in Reissner-Nordstrom spacetimes and generic r^-2-type power-law potentials from orbital motions

    Full text link
    We put model-independent, dynamical constraints on the net electric charge Q of some astronomical and astrophysical objects by assuming that their exterior spacetimes are described by the Reissner-Nordstroem metric, which induces an additional potential U_RN \propto Q^2 r^-2. Our results extend to other hypothetical power-law interactions inducing extra-potentials U_pert = r^-2 as well (abridged).Comment: LaTex2e, 16 pages, 3 figures, no tables, 128 references. Version matching the one at press in General Relativity and Gravitation (GRG). arXiv admin note: substantial text overlap with arXiv:1112.351
    corecore