66 research outputs found

    Complex Patterns of Male Alliance Formation in a Dolphin Social Network

    Get PDF
    The formation and maintenance of alliances is regarded as one of the most socially complex male mating strategies in mammals. The prevalence and complexity of these cooperative relationships, however, varies considerably among species as well as within and between populations living in different ecological and social environments. We assessed patterns of alliance formation for Indo-Pacific bottlenose dolphins, Tursiops aduncus, in Port Stephens, New South Wales, Australia, to investigate the stability of these alliances, the structure of associations, as well as variation in schooling patterns among males. Our results showed that association patterns among males within this population showed considerable variability. Males either formed strong and enduring alliances that lasted for at least 8 years with minimal partner switching, or less stable partnerships within a much larger male social network. Male alliances with the strongest levels of association within a given time period were significantly more likely to maintain their relationships over the long term compared with alliances with lower levels of association. Males in stable alliances also associated in significantly smaller schools than males who formed less stable alliance partnerships. Finally, we found that alliances consisting of more related males did not persist longer than alliances between unrelated individuals. Our study suggests that intrapopulation variation in male alliance formation in dolphins likely reflects different mating strategies adopted as individual responses to their complex fission–fusion social environment

    Corrigendum: Abundance and Potential Biological Removal of Common Dolphins Subject to Fishery-Impacts in South Australian Waters

    Full text link
    Conservation management of wildlife species should be underpinned by knowledge of their distribution and abundance, as well as impacts of human activities on their populations and habitats. Common dolphins (Delphinus delphis) are subject to incidental capture in a range of Australia’s commercial fisheries including gill netting, purse seining and mid-water trawling. The impact these fishery interactions have on common dolphin populations is uncertain, as estimates of abundance are lacking, particularly for the segments of the populations at risk of bycatch and in greater need of protection. Here we used double-observer platform aerial surveys and mark-recapture distance sampling methods to estimate the abundance of common dolphins in 2011 over an area of 42,438 km2 in central South Australia, where incidental mortality of common dolphins due to fisheries bycatch is the highest. We also used the potential biological removal (PBR) method to estimate sustainable levels of human-caused mortality for this segment of the population. The estimated abundance of common dolphins was 21,733 (CV = 0.25; 95% CI = 13,809–34,203) in austral summer/autumn and 26,504 in winter/spring (CV = 0.19; 95% CI = 19,488–36,046). Annual PBR estimates, assuming a conservative maximum population growth rate of Rmax = 0.02 and a recovery factor of Fr = 0.5 for species of unknown conservation status, ranged from 95 (summer/autumn) to 120 dolphins (winter/spring), and from 189 (summer/autumn) to 239 dolphins (winter/spring) with an Rmax = 0.04. Our results indicate that common dolphins are an abundant dolphin species in waters over the central South Australian continental shelf (up to 100 m deep). Based on the 2011 abundance estimates of this species, the highest estimated bycatch of common dolphins (423 mortalities in 2004/05) in the southern Australian region exceeded the precautionary PBR estimates for this population segment. Recent bycatch levels appear to be below PBR estimates, but low observer coverage and underreporting of dolphin mortalities by fishers means that estimates of dolphin bycatch rates are not robust. The effects of cumulative human impacts on common dolphins are not well understood, and thus we recommend a precautionary management approach to manage common dolphin bycatch based on local abundance estimates

    The Use of Carcasses for the Analysis of Cetacean Population Genetic Structure: A Comparative Study in Two Dolphin Species

    Get PDF
    Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully assessed when planning population genetic studies of cetaceans

    Phylogenomics of the genus Tursiops and closely related Delphininae reveals extensive reticulation among lineages and provides inference about eco-evolutionary drivers

    Get PDF
    Phylogeographic inference has provided extensive insight into the relative roles of geographical isolation and ecological processes during evolutionary radiations. However, the importance of cross-lineage admixture in facilitating adaptive radiations is increasingly being recognised, and suggested as a main cause of phylogenetic uncertainty. In this study, we used a double digest RADseq protocol to provide a high resolution (∼ 4 Million bp) nuclear phylogeny of the Delphininae. Phylogenetic resolution of this group has been especially intractable, likely because it has experienced a recent species radiation. We carried out cross-lineage reticulation analyses, and tested for several sources of potential bias in determining phylogenies from genome sampling data. We assessed the divergence time and historical demography of T. truncatus and T. aduncus by sequencing the T. aduncus genome and comparing it with the T. truncatus reference genome. Our results suggest monophyly for the genus Tursiops, with the recently proposed T. australis species falling within the T. aduncus lineage. We also show the presence of extensive cross-lineage gene flow between pelagic and European coastal ecotypes of T. truncatus, as well as in the early stages of diversification between spotted (Stenella frontalis; Stenella attenuata), spinner (Stenella longirostris), striped (Stenella coeruleoalba), common (Delphinus delphis), and Fraser’s (Lagenodelphis hosei) dolphins. Our study suggests that cross-lineage gene flow in this group has been more extensive and complex than previously thought. In the context of biogeography and local habitat dependence, these results improve our understanding of the evolutionary processes determining the history of this lineage

    Effects of dopamine D2/D3 receptor antagonism on human planning and spatial working memory

    Get PDF
    Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 receptors in human executive functions, such as cognitive planning and spatial working memory (SWM). However, studies that investigate an impairment of such functions using the selective DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because relatively low doses were used. We believe we report for the first time, the effects of a higher (800 mg p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male volunteers, we apply a between-groups, placebo-controlled design. We measure outcomes in the difficult versions of the Cambridge Neuropsychological Test Automated Battery One-Touch Stockings of Cambridge and the self-ordered SWM task. Volunteers in the sulpiride group showed significant impairments in planning accuracy and, for the more difficult problems, in SWM. Sulpiride administration speeded response latencies in the planning task on the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the DA receptor D2 Taq1A polymorphism showed better SWM capacity, regardless of whether they received sulpiride or placebo. There were no effects on blood pressure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs SWM and executive planning functions, in a manner independent of the DA receptor D2 Taq1A polymorphism.This research work was funded by a Core Award from the Medical Research Council and the Wellcome Trust to the Behavioural and Clinical Neuroscience Institute (MRC Ref G1000183; WT Ref 093875/Z/10/Z). Also supported by a Wellcome Trust Senior Investigator Award (104631/Z/14/Z) awarded to TWR. CE was supported by the Swiss National Science Foundation (PA00P1_134135) and the Vienna Science and Technology Fund (WWTF VRG13-007)

    Genetic divergence between two phenotypically distinct bottlenose dolphin ecotypes suggests separate evolutionary trajectories

    Get PDF
    Due to their worldwide distribution and occupancy of different types of environments, bottlenose dolphins display considerable morphological variation. Despite limited understanding about the taxonomic identity of such forms and connectivity among them at global scale, coastal (or inshore) and offshore (or oceanic) ecotypes have been widely recognized in several ocean regions. In the Southwest Atlantic Ocean (SWA), however, there are scarce records of bottlenose dolphins differing in external morphology according to habitat preferences that resemble the coastal‐offshore pattern observed elsewhere. The main aim of this study was to analyze the genetic variability, and test for population structure between coastal (n = 127) and offshore (n = 45) bottlenose dolphins sampled in the SWA to assess whether their external morphological distinction is consistent with genetic differentiation. We used a combination of mtDNA control region sequences and microsatellite genotypes to infer population structure and levels of genetic diversity. Our results from both molecular marker types were congruent and revealed strong levels of structuring (microsatellites FST = 0.385, p < .001; mtDNA FST = 0.183, p < .001; ΦST = 0.385, p < .001) and much lower genetic diversity in the coastal than the offshore ecotype, supporting patterns found in previous studies elsewhere. Despite the opportunity for gene flow in potential “contact zones”, we found minimal current and historical connectivity between ecotypes, suggesting they are following discrete evolutionary trajectories. Based on our molecular findings, which seem to be consistent with morphological differentiations recently described for bottlenose dolphins in our study area, we recommend recognizing the offshore bottlenose dolphin ecotype as an additional Evolutionarily Significant Unit (ESU) in the SWA. Implications of these results for the conservation of bottlenose dolphins in SWA are also discussed

    Seascape Genetics of a Globally Distributed, Highly Mobile Marine Mammal: The Short-Beaked Common Dolphin (Genus Delphinus)

    Get PDF
    Identifying which factors shape the distribution of intraspecific genetic diversity is central in evolutionary and conservation biology. In the marine realm, the absence of obvious barriers to dispersal can make this task more difficult. Nevertheless, recent studies have provided valuable insights into which factors may be shaping genetic structure in the world's oceans. These studies were, however, generally conducted on marine organisms with larval dispersal. Here, using a seascape genetics approach, we show that marine productivity and sea surface temperature are correlated with genetic structure in a highly mobile, widely distributed marine mammal species, the short-beaked common dolphin. Isolation by distance also appears to influence population divergence over larger geographical scales (i.e. across different ocean basins). We suggest that the relationship between environmental variables and population structure may be caused by prey behaviour, which is believed to determine common dolphins' movement patterns and preferred associations with certain oceanographic conditions. Our study highlights the role of oceanography in shaping genetic structure of a highly mobile and widely distributed top marine predator. Thus, seascape genetic studies can potentially track the biological effects of ongoing climate-change at oceanographic interfaces and also inform marine reserve design in relation to the distribution and genetic connectivity of charismatic and ecologically important megafauna

    Shared Reproductive State Enhances Female Associations in Dolphins

    Get PDF
    Female bottlenose dolphins (genus Tursiops) usually associate at moderate level with other females within social clusters called bands or cliques. It has been suggested that reproductive state may play the predominant role in determining associations within female T. truncatus bands. Here, we test the hypothesis that reproductive state correlates with associations of female Indo-Pacific bottlenose dolphins (T. aduncus). We found that females in similar reproductive state, which included females from late pregnancy to the first year of their calves' life or females from early pregnancy to their calves' newborn period, had higher-association coefficients with each other than they did with females in different reproductive states (females with older calves or without calves). This was observed both within and across social clusters suggesting that reproductive state, at least for pregnant females and those with young calves, plays an important role in determining who to associate with. However, a female's most frequent associate was not always with another in similar reproductive state. We suggest that several factors, including reproductive state, may be of importance in determining associations of female bottlenose dolphins

    Complex patterns of male alliance formation in a dolphin social network

    No full text

    Male reproductive success increases with alliance size in Indo-Pacific bottlenose dolphins (Tursiops aduncus)

    No full text
    Determining the extent of variation in male mating strategies and reproductive success is necessary to understand the fitness benefits of social and cooperative behaviour. This study assesses the reproductive success of male Indo-Pacific bottlenose dolphins in a small embayment population where different behavioural strategies of males have previously been identified. Parentage for 44 sampled calves was examined using 23 microsatellite loci and one mitochondrial DNA marker. Our candidate parent pool of 70 males and 64 females contained individuals sampled from both the embayment and adjacent coastal populations. A moderate level of polygyny was detected in our sample. We assigned paternity of 23 calves to 12 males at the strict 95% confidence level and an additional nine calves to two males at the 80% confidence level. The majority (92%) of successful males were identified as residents to the embayment, and 46% of offspring were located within the same social group or community as their father. Our results suggest that the size of alliances was the best predictor of reproductive success for males in this population, while the strength of association among allied males, alliance stability and male ranging patterns had little influence. In line with predictions for male alliances formed between unrelated individuals, we found that reproductive skew within alliances was not large. Together, our genetic and behavioural analyses demonstrate that alliance formation between male dolphins is a successful strategy to enhance reproductive output.9 page(s
    corecore