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Abstract 

Psychopharmacological studies in humans suggest important roles for dopamine (DA) D2 

receptors in human executive functions, such as cognitive planning and spatial working 

memory. However, studies that investigate an impairment of such functions using the selec-

tive DA D2/3 receptor antagonist sulpiride have yielded inconsistent results, perhaps because 

relatively low doses were used. We report, for the first time, the effects of a higher (800mg 

p.o.) single dose of sulpiride as well as of genetic variation in the DA receptor D2 gene (DA 

receptor D2 Taq1A polymorphism), on planning and working memory. With 78 healthy male 

volunteers, we apply a between-groups, placebo controlled design. We measure outcomes in 

the difficult versions of the CANTAB One-Touch Stockings of Cambridge (OTSOC) and the 

self-ordered Spatial Working Memory (SWM) task. Volunteers in the sulpiride group showed 

significant impairments in planning accuracy and, for the more difficult problems, in spatial 

working memory. Sulpiride administration speeded response latencies in the planning task on 

the most difficult problems. Volunteers with at least one copy of the minor allele (A1+) of the 

DA receptor D2 Taq1A polymorphism showed better spatial working memory capacity, re-

gardless of whether they received sulpiride or placebo. There were no effects on blood pres-

sure, heart rate or subjective sedation. In sum, a higher single dose of sulpiride impairs spatial 

working memory and executive planning functions, in a manner independent of the DA recep-

tor D2 Taq1A polymorphism. 

  



 

 

Introduction 

The role of the dopaminergic system in modulating cognitive functions within the prefrontal 

cortex and striatum is well established.1-4 The concept of fronto-striatal circuitry emphasizes 

the functional inter-relationship between the prefrontal cortex and the striatum, with the latter 

influencing cortical higher-order cognitive functions and vice versa.5, 6 Cognitive functions 

such as planning and working memory depend critically on dopamine signalling within this 

circuit. This has been shown by psychopharmacological drug challenges, genetic studies and 

research on diseases that affect fronto-striatal dopamine (DA) levels.7-13 

Although DA D2 receptors occur at lower density in the prefrontal cortex than DA D1 recep-

tors, D2 receptors are nevertheless implicated in planning and working memory. For instance, 

administration of the DA D2 agonist bromocriptine enhanced performance on a delayed-

response working memory task, while low doses of the DA D2 antagonist haloperidol im-

paired performance.14, 15 Furthermore, a relationship between striatal DA D2 receptor density 

and planning accuracy was observed in Huntington’s disease patients,16, 17 suggesting that the 

dopaminergic system exerts part of its modulatory role on planning and working memory 

performance via the DA D2 receptor. 

The DA D2/D3 antagonist sulpiride has been investigated using relatively low doses of 

200mg and 400mg.7 Sulpiride was found to cause a dose-dependent impairment in short term 

spatial location memory, as well as impaired planning in the most difficult stages of the one-

touch Tower of London task. In a subsequent pharmaco-PET study, 400mg of sulpiride had 

no effect on spatial working memory, and paradoxically improved planning performance.8 

This effect was paralleled by a decrease in regional cerebral blood flow in the caudate.8 In 

another study18 using the self-ordered spatial working memory task from the Cambridge Neu-

ropsychological Test Automated Battery (CANTAB), 400mg of sulpiride did not affect per-

formance, but puzzlingly, others even reported improved accuracy of working memory fol-

lowing the same dose of sulpiride.19 



 

 

One account for these discrepant results is that perhaps 400mg sulpiride does not result in 

sufficient occupancy of post-synaptic DA D2 receptors to reliably impair executive functions. 

Furthermore, it has been observed that low doses of amisulpride (similar to sulpiride, both 

being selective for DA D2/3 receptors) exert a greater functional blockade of cortical and 

limbic, rather than striatal, DA D2 receptors.20, 21 DA release may even increase in these re-

gions as a consequence of pre-synaptic DA D2 autoreceptor blockade.22 Overall, the causal 

role of post-synaptic DA D2 receptors in planning and spatial working memory in healthy 

humans remains elusive. 

To achieve a sufficient blockade of postsynaptic DA D2 receptors within the fronto-striatal 

circuitry, higher doses of sulpiride may have to be administered. Previous studies have shown 

that a single dose of 400mg sulpiride occupies roughly 30% of striatal DA D2 receptors,23 

whereas an 800mg dose results in roughly 60% occupancy levels, yet still without causing 

demonstrable side effects in healthy volunteers.24, 25 We therefore employed a dose of 800mg 

p.o. in the present study. 

Finally, although sulpiride does not possess significant binding to α-adrenergic, histaminergic 

or serotoninergic receptors, it nevertheless does not discriminate between DA D2 and D3 re-

ceptors. Since the anatomical distribution of these two receptors is only partially overlapping, 

a pharmacogenetic study design24, 26-28 may enable more specific inferences to be drawn re-

garding the role of the DA receptor D2 in planning and working memory performance. A rel-

evant candidate genetic variation in this context is the DA D2 receptor Taq1A polymorphism, 

as its minor A1 allele has been associated specifically with a reduction in striatal DA receptor 

D2 density of up to 30 percent.29-33 Based on this evidence one might expect A1+ volunteers 

to be disproportionately sensitive to DA receptor D2 antagonism in terms of behavioural im-

pairments in planning and working memory performance. 

We hypothesize that a single dose of 800mg sulpiride administered p.o. to healthy volunteers 

induces impairments in working memory and planning performance, compared to placebo. 



 

 

We also predict this impairment to be most pronounced in volunteers carrying the minor A1+ 

allele of the DA receptor D2 Taq1A polymorphism. 

 

Material and Methods 

Volunteers 

Seventy-eight healthy men aged between 19 and 44 years (mean = 32.1) participated. All 

were recruited from Cambridge BioResource, a large community-based panel of volunteers 

for research linking genotype to phenotype (http://www.cambridgebioresource.org.uk). All 

volunteers are right-handed European or North American Caucasians. Volunteers were strati-

fied based on their DA receptor D2 Taq1A genotype, with one group consisting of individuals 

carrying one or two copies of the A1 allele and the other group consisting of A2 allele homo-

zygotes. All volunteers were task-naïve and none had participated in previous psychoactive 

drug studies. 

Volunteers´ mental and physical health was screened prior to genotyping using a detailed 

medical history questionnaire used by Cambridge BioResource. This revealed no history of 

neurological disease or psychiatric disorders. In addition, the psychiatrist on site performed 

another structured interview, confirming that volunteers had no significant general psychiat-

ric, medical, or neurological disorder and were not currently taking any prescription medicine, 

nor drugs of abuse. All volunteers were required to perform an alcohol test upon arrival at the 

lab using a commercially available breath alcohol analyser. This confirmed that no volunteer 

had consumed alcohol on the study day. 

The study was performed in accordance with the Declaration of Helsinki and approved by the 

National Research Ethics Committee of Hertfordshire (11/EE/0111). All volunteers were in-

cluded in the study only after having provided written informed consent. For three volunteers, 

data collection was unsuccessful: One felt uncomfortable in the testing room (sulpiride group 

A1-), and two non-native English speaking volunteers (placebo group A1-, sulpiride group 



 

 

A1-) did not sufficiently understand the instructions for the CANTAB tasks. In addition to the 

working memory and planning tasks reported here, volunteers also completed an incentivized 

reinforcement learning task24 and incentivised social interaction tasks (assessing negative and 

positive reciprocity). The working memory and planning tasks reported in this paper were not 

incentivized; volunteers received a flat fee of £50 for participation in the study, plus any addi-

tional earnings from the incentivized tasks. Verbal IQ estimates were calculated for all volun-

teers (National Adult Reading Test;34 mean = 119.8 ± 7.33; range = 101 – 129). A technical 

fault led to the omission of one further volunteer on the Spatial Working Memory task (sul-

piride group A1+). 

 

Experimental Design 

We used a between-subject, double-blind, placebo-controlled design, where 78 volunteers 

were randomized to receive either a single oral dose of 800mg sulpiride or placebo. Volun-

teers were stratified based on their DA receptor D2 Taq1A genotype, yielding the following 

four groups: A1+ volunteers who were administered sulpiride (n=21) and A1+ volunteers 

who were administered placebo (n=17); as well as A1- volunteers who were administered 

sulpiride (n=19) and A1- volunteers who were administered placebo (n=21). There were no 

differences across the four groups with regard to age (Ps > 0.49), BMI (Ps > 0.24) or IQ (Ps > 

0.42). 

 

Procedure 

On the study day, volunteers arrived at the lab between 8.30am and 10.00am. At the start, 

volunteers completed two questionnaires for assessing current mood (VAS). Then, pulse rate 

and blood pressure were measured and blood samples (10ml) were taken. All volunteers then 

received either a sulpiride or placebo capsule, which was administered orally. After ingesting 

the pill volunteers passed a waiting period in individual rooms. While waiting, volunteers 



 

 

were allowed to read newspapers. In line with a previous study,8 the planning task was admin-

istered three hours after capsule ingestion in order to coincide with the time-window of max-

imal sulpiride effects. Before the task started, volunteers had to complete a comprehensive 

side-effect questionnaire,35 current mood, blood pressure and pulse rate were measured and a 

second blood sample was taken (Supplementary Table 1). The SWM and OTSOC tasks were 

presented on computers and responses were registered via touch-sensitive screens. At the end 

of the experiment, volunteers were asked to guess whether they had received the sulpiride or 

the placebo pill (Supplementary Table 1). 

 

CANTAB Spatial Working Memory (SWM) task 

The SWM is a self-ordered search task which requires volunteers to search through a spatial 

array of 4, 6, 8, 10 or 12 coloured squares (boxes) for a “token” that is hidden in one of the 

boxes. Volunteers touch a box to reveal whether the token is in the box or not. Once a token is 

found, the search starts again, but is no longer completely random. Volunteers know that no 

token will be hidden in a box where a token was previously hidden. Thus, each round fewer 

boxes are possible candidates; each round, volunteers have to remember more boxes that are 

no longer ‘in the game’. In this test, volunteers have to use mnemonic information to work 

towards a goal. Between-search errors are “forgetting” errors committed when a box that has 

previously been successful is revisited during a subsequent search. Within-search errors entail 

revisiting a box within a search, i.e. the number of times a volunteer revisits a box already 

found to be empty during the same search. An efficient strategy for this problem is to start 

each search sequence with the same box. Our strategy score is quantified as the number of 

times the volunteer starts a search sequence from a different box (thus a higher strategy score 

represents inefficient strategy use). The strategy score is typically correlated with working 

memory errors, but strategy is specifically impaired in patients with frontal (but not temporal) 

lobe injury.36 Volunteers did two practice searches with three boxes each. The practice 



 

 

searches were completed immediately before the main SWM task, and successful solving of 

these practice searches was a requirement for progressing onto the main test. The main task 

consisted of fifteen problems in total, three for each of the five difficulty levels. 

 

CANTAB One-Touch Stockings of Cambridge (OTSOC) task 

We investigated planning using a modified version of the Tower of London task, the One-

Touch Stocking of Cambridge (OTSOC) from the Cambridge Neuropsychological Test Au-

tomated Battery (CANTAB) (Cambridge Cognition, http://www.camcog.com). In this modi-

fied version of the task, volunteers are required to determine the minimum number of moves 

needed to solve the problem without actually moving any of the balls. This modification forc-

es volunteers to plan the solution in full before initiating a response. This ensures actual plan-

ning and enables an improved investigation of the specific relation between the time to initiate 

the first response (response latency), the problem difficulty and the number of attempts to 

solve the problem (accuracy). 

In the OTSOC, volunteers were first presented with two displays on a computer screen, each 

showing three coloured balls arranged within three stockings. The challenge was to match the 

lower to the upper display and to achieve this with the least possible number of moves. The 

difficulty varied from one to six moves needed to solve a problem. Volunteers were not re-

quired or even able to physically move the balls to replicate the upper display. They just had 

to select the minimum number of moves needed from a list of seven possibilities displayed at 

the bottom of the screen. They were allowed to take as many attempts as needed to solve the 

problem. The number of attempts to solve the problem (accuracy) and the time taken to initi-

ate the first response (response latency) were recorded. To confirm that volunteers understood 

the instructions, they had to successfully complete four practice trials immediately before the 

main OTSOC task started. The main task consisted of four problems for each of the six diffi-

culty levels, resulting in twenty-four problems in total. 



 

 

 

Prolactin level assessment 

Plasma prolactin level elevation is considered to be an indicator of post-synaptic dopamine 

receptor antagonism.37, 38 Post-synaptic dopamine blockade is predicted to elevate prolactin 

levels at the second time point, three hours after capsule ingestion.39, 40 Prolactin level was 

measured using a commercial immunoradiometric assay (MP Biomedicals). The intra- and 

inter-assay CVs were 4.2% and 8.2 %, respectively, and the limit of detection was 0.5ng/ml.24 

 

Visual Analogue Scales (VAS) and side effects questionnaire 

The Visual Analogue Scale41 was used to assess volunteers’ current mood state at baseline 

and three hours after sulpiride/placebo administration. The original VAS contains sixteen 

scales. In the present study we investigated alertness, calmness and contentedness. 

Side effects were recorded using a drug effects questionnaire (neurovegetative list, NVL)35 

three hours after sulpiride/placebo administration. 

 

Statistical analysis 

Statistical analysis was performed using the software package STATA. Differences across 

groups concerning age, BMI, general IQ and verbal IQ were analysed using t-tests. Concern-

ing the control variables current mood, side-effects, blood pressure, pulse rate and prolactin 

level we used non-parametric tests such as the Mann-Whitney and the Wilcoxon signed rank 

test. 

To calculate the standard errors used in the figures, we ran ordinary least squares regressions 

with the variable on the vertical axis as dependent variable and the variable on the horizontal 

axis as explanatory variable. We ran such a regression for each sub-group we report in the 

figures. To take into account the repeated measurement, standard errors were clustered on 

individual level. The clustered standard errors are also robust to some minor misspecifications 



 

 

such as minor problems about normality, heteroscedasticity, or some observations that exhibit 

large residuals, leverage or influence. 

To analyse the effects of sulpiride and genotype on OTSOC and SWM variables of interest 

(including the practice trials), we conducted a repeated-measures analysis of variance (ANO-

VA), with task difficulty level as the within-subject factor and sulpiride treatment and geno-

type as between-subject factors, as well as all interactions between these variables. In sup-

plementary Tables 2 and 3 we report the full results for the four ANOVAs conducted, where-

as in the main text we do not always report all the variables in detail. To test whether the vari-

ance of our dependent variables are different between the sulpiride and placebo group we 

used Levene’s test. 

To assess the relationship between accuracy and response latency in OTSOC we used ordi-

nary least square regressions with accuracy as dependent variable and response latency, sul-

piride and their interaction as explanatory variables. In supplementary Table 4 we report the 

full results for the three regressions conducted. We have excluded two outliers in the regres-

sion regarding the relationship between accuracy and response latency, and they are labelled 

in Figure 4. 

To normalize response latency distribution, the data was log-transformed and divided by 

1000.42 Significant differences are reported as p < 0.05. Results do not change qualitatively if 

IQ is included as a control variable. 

 

Results 

Spatial Working Memory (SWM) 

Figure 1a shows that volunteers in the sulpiride group made more between-search errors than 

volunteers in the placebo group, but only in the more difficult problems. An ANOVA con-

firmed the significant interaction effect of drug condition with level of difficulty on between-

search errors (F(4,1020) = 2.66, P = 0.031, η² = 0.01). The main effect of sulpiride was non-



 

 

significant (F(1,70) = 2.15, P = 0.147, η² = 0.03). Post-hoc tests confirmed that the sulpiride 

effects in the difficult 10 box and 12 box problems were significantly larger than the sulpiride 

effect in the easiest 4-box problems (10-box; p = 0.022; 12-box: p = 0.031). The sulpiride 

group did not differ significantly in their strategy scores from the placebo group (F(1,70) = 

0.63, P = 0.431) nor was there an interaction effect of drug condition with the task difficulty 

level (F(4,280) = 0.40, P = 0.807) (Figure 1b). Therefore, the sulpiride effect on between-

search errors cannot be explained by more frequent use of an inefficient strategy. 

Considering the effects of the DA receptor D2 Taq 1A genotype (see Figures 2a and 2b), A1- 

volunteers across both drug conditions made fewer between-search errors in the difficult 

problems than A1+ volunteers. In the ANOVA, this was confirmed with a significant interac-

tion effect of genotype with the level of difficulty on between-search errors (F(4,1020) = 2.55, 

P = 0.038, η² = 0.01). Post-hoc tests confirmed that the genotype effects in the difficult 12 and 

10 box problems were significantly larger than the genotype effect in the easiest 4-box prob-

lems (10-box; p = 0.069; 12-box: p = 0.011). The main effect of genotype was non-significant 

(F(1,70) = 2.79, P = 0.099, η² = 0.04), and there was no significant interaction of genotype 

with drug condition (F(1,70) = 0.13, P = 0.720). For strategy scores (Figures 2c and 2d), the 

main effect of genotype was not significant (F(1,70) = 0.39, P = 0.535), nor the interactions of 

genotype with difficulty level (F(4,280) = 0.65, P = 0.630) or drug condition (F(1,70) = 0.60, 

P = 0.441). Therefore, it seems that the difference in between-search errors between A1+ and 

A1- carriers cannot be explained by a difference in the extent of using an inefficient strategy. 

We do find, however, a significant three-way interaction of genotype with sulpiride and task 

difficulty level on the strategy measure (F(4,280) = 2.48, P = 0.044, η² = 0.03). This effect is 

driven by A1+ volunteers who appear to respond differently to sulpiride in easier compared to 

the more difficult problems. This needs to be interpreted cautiously as we are underpowered 

for analysing mere genotype - behaviour associations (i.e. 16 – 20 observations for each of the 

4 groups). 



 

 

We also tested whether sulpiride had any effect on the training process of the SWM task. We 

find no significant difference between the sulpiride and the placebo group in performance in 

the two practice trials (ps > 0.21). Together with the above result that there is no difference 

between the sulpiride and placebo group in the easy searches in the main task, this indicates 

that sulpiride did not affect the training process of the task. 

 

One-Touch-Stockings of Cambridge measures (OTSOC) 

In the OTSOC task, volunteers in the sulpiride group required more attempts to correctly 

solve the task than volunteers in the placebo group (Figure 3a). In other words, the accuracy 

of decisions was lower in the sulpiride compared to the placebo group, which was confirmed 

by an ANOVA (F(1,71) = 5.09, P = 0.027, η² = 0.07). The sulpiride effect on accuracy was 

highest for the two most difficult problems, though the interaction of task difficulty level with 

sulpiride was not significant (F(5,1705) = 1.71, P = 0.129). With regards to response laten-

cies, we analysed the response latency of the first response. As can be seen from Figure 3b, 

there was no main effect of sulpiride on response latencies (F(1,71) = 0.67, P = 0.416). There 

was a significant interaction between drug condition and task difficulty on planning latency 

(F(5,1705) = 3.43, P = 0.004, η² = 0.01), such that the response latency was significantly 

shorter on sulpiride compared to placebo for the most difficult problems. A post-hoc test con-

firmed that the sulpiride effect on response latency was larger in the most difficult problems 

compared to the easiest problems (p = 0.001). 

To further specify the nature of this association we tested the relationship between response 

latencies and accuracy for easier and more difficult problems separately. A negative relation-

ship between speed and accuracy (represented by our measures of their opposites, response 

latency and mistakes) can be interpreted as a speed accuracy trade off. In other words, spend 

more time thinking about it in order to make fewer mistakes, or make a quick response at the 

cost of possibly being mistaken. To test this relationship, we use an ordinary least square re-

gression with mean number of moves above minimum as the dependent variable and response 



 

 

latency, sulpiride and their interaction as explanatory variables. In the easier problems (mini-

mum possible moves from 1 – 4), we found that the relationship between speed and accuracy 

was significantly positive in the placebo group (βlatency = 0.10, p = 0.045) and also positive but 

insignificant in the sulpiride group (βlatency = 0.08, p = 0.410). The interaction between sul-

piride and response latency was not significant either (βlatency*sulpiride = -0.02, p = 0.834). The 

lack of a negative relationship between speed and accuracy indicates that there is no speed 

accuracy trade-off in easy problems (Figure 4a). However, for the more difficult problems (5 

– 6 minimum possible moves), there was a negative relation between speed and accuracy in 

both the sulpiride (6 moves: βlatency = -0.72 , P<0.001; 5 moves: βlatency =-0.16 , P=0.279) and 

the placebo group (6 moves: βlatency = -0.17, P=0.094; 5 moves: βlatency =-0.27 , P=0.089), 

which is consistent with a speed-accuracy trade-off (Figure 4b). The trade-off is most pro-

nounced in the 6-move problems and weaker in the 5 moves problems. Possibly it takes a 

certain degree of complexity or difficulty for a speed-accuracy trade off to emerge. Interest-

ingly, in the hardest problems (6 moves) the speed-accuracy trade off was significantly larger 

in the sulpiride compared to the placebo group (βlatency*sulpiride = -0.55, p < 0.001). The larger 

speed-accuracy trade off in the sulpiride group compared to the placebo group is driven by 

more fast, imprecise responses (rather than long response latencies and few mistakes) in the 

sulpiride group (Figure 4b). This suggests that sulpiride alters the speed-accuracy trade-off in 

planning towards impulsive, less accurate responses. This needs to be interpreted with caution 

as the number of observations in this analysis is smaller than in the main analyses reported 

above (i.e. it is based on 74 volunteers each doing four 6-move problems). 

Concerning DA receptor D2 Taq 1A genotype (Figure 5), there was neither a significant main 

effect of genotype (F(1,71) = 0.01, P = 0.941), nor a significant interaction with task difficul-

ty (F(5,1705) = 1.84, P = 0.103) or drug condition (F(1,71) = 0.85, P = 0.361) on accuracy. 

Also, there was neither a significant main effect of genotype nor significant interactions of 

genotype with drug condition and task difficulty on response latency measures (Ps > 0.708). 



 

 

We also tested whether sulpiride had any effect on the training process of the OTSOC task. 

We find no significant difference in the accuracy of the decisions in the four practice trials 

between the sulpiride and the placebo group (ps > 0.19). Together with the above result that 

there is no difference between the sulpiride and placebo group in the 1 and 2-move problems 

in the main task, this is strong evidence that sulpiride did not affect the training process of the 

task. 

 

Prolactin secretion and side effects 

Results regarding changes in prolactin levels, heart rate, and blood pressure as well as self-

reported measures of sedation are outlined in the supplementary material and methods as well 

as Supplementary Table 1. 

 

 

Discussion 

We found that a high single dose of 800mg of the selective DA receptor D2/D3 antagonist 

sulpiride led to significant impairments in planning accuracy on the OTSOC task, and, for the 

more difficult problems, on spatial working memory in the SWM task (with no significant 

effect on the strategy measure). Sulpiride did not affect sensorimotor functions, as measured 

by response latencies in the easy problems of the OTSOC, but it speeded response latencies 

on the most difficult problems. We also observed significant modulatory effects of the DA 

receptor D2 Taq1A polymorphism on spatial working memory, but not on planning. Sulpiride 

led to a significant increase in prolactin secretion, indicating postsynaptic DA receptor D2 

blockade,37, 38 as reported previously.24 Further, we did not observe any significant effects of 

sulpiride on blood pressure, heart rate or self-reported measures of sedation.24 

 

 



 

 

Previous studies observed that lower doses (i.e.<=400 mg) of sulpiride induced impairments 

in tasks assessing spatial working memory using challenging tasks such as sequence genera-

tion,7 and the CANTAB short term spatial recognition/location task.23 In contrast, lower doses 

of sulpiride did not induce impairments in tasks that are less challenging, such as the verbal 

working memory task19 or the easier (with a maximum of 8 boxes) version of the CANTAB 

self-ordered spatial working memory task.43 Therefore, although this categorization falls short 

of taking into account other differences than difficulty, it is noteworthy that we observed im-

pairments after a high single dose of sulpiride induced impairments specifically in the diffi-

cult (10 and 12 box), but not the easier problems of the CANTAB spatial working memory 

task. Our findings therefore extend on previous results and suggest that effects may not be 

dose-dependent, but largely depend on task difficulty. 

Performance on the spatial working memory task can be facilitated by using a repetitive 

search strategy that serves to reduce the direct working memory load. This strategy utilisation 

recruits the prefrontal cortex, as documented by imaging research as well as by a study in 

frontal lobe lesion patients who seem to use a relatively inefficient search strategy.36, 44 The 

fact that we found no significant effect of this high single dose of sulpiride on the strategy 

measure suggests that our observed impairments are unrelated to any potential impairment in 

prefrontal function. Rather, striatal mediation is plausible, especially given that our findings 

resemble those found in early stage Parkinson´s disease patients, who do not show a deficit in 

the strategy measure either.45 

Previous studies that employed within-subject designs have reported significant interaction 

effects of sulpiride with administration sequence.7, 18 For instance, volunteers receiving sul-

piride on the first day were impaired in spatial working memory, but this was reversed in the 

second testing session, i.e. volunteers performed better on sulpiride.7 Hence, although these 

previous findings raise interesting questions with regards to a potential role of sulpiride in 

learning or consolidation processes7 they are difficult to interpret. Our findings that were ob-



 

 

tained using a between-subjects design provide more conclusive evidence for a role of DA D2 

receptor blockade in spatial working memory. 

With respect to planning, one study8 showed an improvement in planning ability and another 

study7 reported a decrease in planning ability after sulpiride administration. The latter study 

found this decrease in planning ability only in the most difficult problems.7 At the higher dose 

of sulpiride used here, we observed a planning impairment on both easier and more difficult 

problems. This divergence from earlier results could reflect a genuine dosage effect: A high 

single dose of sulpiride is necessary to achieve planning impairments on easier problems. 

However, we cannot yet definitely conclude this, given that the earlier study7 used a within-

subject design whereas we applied a between-subject design, the results are not strictly com-

parable and the differences in our results could potentially be caused by these differences in 

the designs applied. 

Planning latencies on the OTSOC clearly increased with problem difficulty. In the most diffi-

cult problems, latencies also correlated negatively with accuracy, i.e. volunteers with shorter 

response latencies made more mistakes, consistent with a speed-accuracy trade-off. Intri-

guingly, this relationship was more pronounced in the sulpiride group. In a study using a ver-

sion of a task similar to the OTSOC that also requires planning of the solution in advance,11 

the times taken to correctly solve the more difficult problems were almost twice as long com-

pared to those observed in the original Tower of London task.46 This difference can be ex-

plained by the additional increase of working memory load in the OTSOC task compared to 

the original Tower of London task.11 Given that sulpiride affected working memory in our 

study too, the faster response latencies for difficult problems among the sulpiride group might 

suggest that excessive task demands caused volunteers to guess impulsively on the most diffi-

cult problems. 

In our previous study on the role of the DA receptor D2 in reinforcement learning in the same 

cohort as the present study,24 a single dose of 800mg of sulpiride had no effect on learning per 



 

 

se, but rather induced profound impairments in choice performance. These results were gen-

erally consistent with an involvement of the DA receptor D2 in tonic dopaminergic activity 

that has been linked to response vigour and motivational effects.47 Although in the present 

study there were no monetary rewards contingent on performance, impairments in motivation 

may partially explain the effects we observed, particularly those in the difficult problems. 

Furthermore, unlike in our earlier study where we found a modulatory role of the DA receptor 

D2 Taq1A polymorphism on rewarded choice performance,24 here we found no such differen-

tiation of the sulpiride effect on planning ability or spatial working memory. Such a phar-

macogenetic interaction effect would have been the strongest evidence for a causal role of DA 

D2 receptors in these executive functions. Sulpiride, despite being one of the few relatively 

selective drugs affecting dopaminergic neurotransmission available for human use, has a very 

similar affinity for the DA D3 receptor as for the D2 receptor.48, 49 Therefore our results indi-

cate that the observed main effect of sulpiride on executive functions may also partially be 

mediated by DA D3 receptors. In this regard it is interesting to note that preclinical research 

using D3 receptor antagonists in animals suggests a rather distinct profile compared to D2 

receptor antagonists by showing positive effects on cognition.50 Alternatively, our findings 

might also echo the greater functional blockade of cortical D2/3 receptors proposed for 

amisulpride,21 compared to striatal receptor blockade. 

With regards to our observed main effects of the DA receptor D2 Taq1A polymorphism, it is 

noteworthy that previous behavioural genetic studies have reported that the minor A1 allele 

(A1+) is associated with poorer performance in general cognitive ability,51 including visual 

working memory52 and verbal learning.53 A recent study54 that included the OTSOC as part of 

a larger test battery found no effect of the presence of the A1+ allele on planning. Thus, our 

findings are in line with those studies, showing that the presence of the A1+ allele is associat-

ed with impairments in spatial working memory performance, but not with impairments in 

planning. 



 

 

Although speculative, our results might therefore suggest that while a high single dose of sul-

piride is required to block a sufficient number of postsynaptic DA D2 receptors to produce 

unambiguous deficits in planning performance, this is not the case with regards to spatial 

working memory performance. In the latter, both lower7, 23 and higher doses of sulpiride cause 

impairments in difficult problems suggesting that relatively low postsynaptic DA D2 receptor 

occupancy levels suffice to produce these impairments. The fact that these impairments are 

also observed in A1+ allele carriers, irrespective of sulpiride administration, further suggests 

that a ceiling-type of effect might exist, after which a higher number of DA D2 receptor oc-

cupancy does not lead to a more pronounced impairment in spatial working memory. Whether 

DA D3 receptors represent the neuropharmacological substrate of high single dose sulpiride 

effects on planning performance, which would be consistent with the absence of effects of the 

DRD2 Taq 1a polymorphism in this and a previous study, is a subject for future pharmaco-

genetic studies using larger sample sizes. 

In sum, we observed that a high single dose of sulpiride induces significant impairments in 

planning accuracy and spatial working memory. With regards to spatial working memory, this 

effect is dependent on task difficulty level. We also found that sulpiride, even when given at a 

high single dose, did not modulate the extent of the use of an inefficient strategy in the spatial 

working memory task. However, it is unlikely that the effects of sulpiride are attributable 

simply to impaired sensorimotor processing, as effects in latencies varied with the level of 

cognitive difficulty of the tasks. Sulpiride administration speeded response latencies in the 

OTSOC on the most difficult problems, which might suggest that sulpiride increased impul-

sive guessing. Finally, we found that the presence of the A1+ allele is associated with im-

pairments in spatial working memory performance, but not with impairments in planning. The 

lack of both a main effect of the DA receptor D2 Taq1A polymorphism and an interaction 

with sulpiride administration on planning performance might suggest that sulpiride exerts its 

impact on this cognitive measure via DA D3 receptors; however future pharmacogenetic stud-



 

 

ies using larger sample sizes need to confirm this. 
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Figure legends 

Figure 1: Effects of sulpiride (800mg) on the number of between error searches (a) and rela-

tive use of the inefficient strategy against task difficulty level (b) in the SWM task. Plotted 

are means ± error bars of 2 standard errors (corrected for repeated observations). 

 

Figure 2: The effects of the DA receptor D2 Taq 1A genotype on between error searches (a, 

b) and relative use of the inefficient strategy against task difficulty level (c, d) in the SWM 

task. The left column (a, c) shows theses effects for the placebo group and the right column 

(b, d) for the sulpiride group only. Plotted are means ± error bars of 2 standard errors (cor-

rected for repeated observations). 

 

Figure 3: Sulpiride (800mg) effects on the mean number of moves required to correctly solve 

the task (accuracy) (a) and the mean log response latency taken for the first response to be 

made against task difficulty level (b) in the OTSOC task. Plotted are means ± error bars of 2 

standard errors (corrected for repeated observations). 

 

Figure 4: Sulpiride (800 mg) effects on the relationship between response latency and accura-

cy. In the upper Figure (a) this relationship is shown for the easy problems (level 1 – 4). In 

the lower Figure (b) this relationship is shown for the hardest problem (level 6).  We have 

added a fitted line to illustrate the strength of the relationship. 

 

Figure 5: The effects of the DA receptor D2 Taq 1A genotype on the mean number of moves 

required to correctly solve the task (accuracy) (a, b) and the mean log response latency taken 

for the first response to be made against task difficulty level (c, d) in the OTSOC task. The 

left column (a, c) shows theses effects for the placebo group and the right column (b, d) for 

the sulpiride group only. Plotted are means ± error bars of 2 standard errors (corrected for 

repeated observations). 
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